共 32 条
- [1] On the Diophantine equation yp=f(x)g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y^{p} = \frac{f(x)}{g(x)}}$$\end{document} Acta Mathematica Hungarica, 2019, 157 (1) : 1 - 9
- [2] On b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ b$$\end{document}-concatenations of two k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k$$\end{document}-generalized Fibonacci numbers Acta Mathematica Hungarica, 2025, 175 (2) : 452 - 471
- [3] On the diophantine equation y2=∏i≤8(x+ki)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y^{2} = \prod _{i \le 8}(x + k_i)}$$\end{document} Proceedings - Mathematical Sciences, 2018, 128 (4)
- [4] The diophantine equation (y+q1)(y+q2)⋯(y+qm)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(y + q_{1})(y + q_{2})\cdots(y + q_{m}) = f(x)}$$\end{document} Acta Mathematica Hungarica, 2015, 146 (1) : 40 - 46
- [5] A note on the Diophantine equation f(x)f(y)=f(z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)f(y)=f(z^2)$$\end{document} Periodica Mathematica Hungarica, 2015, 70 (2) : 209 - 215
- [6] On the Diophantine equation x2+C=yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2+C=y^n$$\end{document} Indian Journal of Pure and Applied Mathematics, 2024, 55 (1) : 69 - 77
- [7] A Pellian Equation with Primes and Applications to D(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(-1)$$\end{document}-Quadruples Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (5) : 2915 - 2926
- [8] On solutions of the diophantine equation Fn-Fm=3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{F_{n}-F_{m}=3^{a}}$$\end{document} Proceedings - Mathematical Sciences, 2019, 129 (5)
- [9] On the Diophantine equation x2+bm=cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{x^2+b^m=c^n}$$\end{document} with a2+b4=c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a^2+b^4=c^2}$$\end{document} Indian Journal of Pure and Applied Mathematics, 2022, 53 (1) : 162 - 169
- [10] On the variant Qn!=Px\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\left(n!\right)=P\left(x\right)$$\end{document} of the Brocard–Ramanujan Diophantine equation The Ramanujan Journal, 2024, 65 (4) : 1791 - 1798