Universal statistics of the local Green’s function in wave chaotic systems with absorption

被引:0
作者
D. V. Savin
H. -J. Sommers
Y. V. Fyodorov
机构
[1] Universität Duisburg-Essen,Fachbereich Physik
[2] University of Nottingham,School of Mathematical Sciences
[3] Russian Academy of Sciences,Petersburg Nuclear Physics Institute
来源
Journal of Experimental and Theoretical Physics Letters | 2005年 / 82卷
关键词
05.45.Mt; 73.23.−b; 42.25.Bs;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a general relation between the statistics of the local Green’s function for systems with chaotic wave scattering and uniform energy loss (absorption) and the two-point correlator of its resolvents for the same system without absorption. Within the random matrix approach, this kind of a fluctuation dissipation relation allows us to derive the explicit analytic expression for the joint distribution function of the real and imaginary part of the local Green’s function for all symmetry classes as well as at an arbitrary degree of time-reversal symmetry breaking in the system. The outstanding problem of orthogonal symmetry is further reduced to simple quadratures. The results can be applied, in particular, to the experimentally accessible impedance and reflection in a microwave cavity attached to a single-mode antenna.
引用
收藏
页码:544 / 548
页数:4
相关论文
共 37 条
[1]  
Guhr T.(1998)undefined Phys. Rep. 299 189-undefined
[2]  
Müller-Groeling A.(1993)undefined Phys. Rev. Lett. 70 1315-undefined
[3]  
Weidenmüller H. A.(2000)undefined Phys. Rep. 326 259-undefined
[4]  
Efetov K. B.(2004)undefined JETP Lett. 80 725-undefined
[5]  
Prigodin V. N.(2005)undefined Phys. Rev. Lett. 94 014102-undefined
[6]  
Mirlin A. D.(2003)undefined Phys. Rev. Lett. 91 194101-undefined
[7]  
Fyodorov Y. V.(2005)undefined Phys. Rev. E 71 016205-undefined
[8]  
Savin D. V.(1997)undefined Phys. Rev. B 55 4695-undefined
[9]  
Hemmady S.(2003)undefined Phys. Rev. E 78 036211-undefined
[10]  
Zheng X.(1997)undefined J. Math. Phys. 38 1918-undefined