On the Schrödinger operator connected with a family of Hamiltonian-minimal Lagrangian surfaces in ℂP2

被引:0
作者
B. T. Saparbayeva
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Siberian Mathematical Journal | 2016年 / 57卷
关键词
Hamiltonian-minimal; Lagrangian surface;
D O I
暂无
中图分类号
学科分类号
摘要
Under study is the two-dimensional Schrödinger operator connected with the family of Hamiltonian-minimal Lagrangian surfaces in ℂP2.
引用
收藏
页码:1077 / 1081
页数:4
相关论文
共 15 条
  • [1] Mironov A. E.(2004)New examples of Hamilton-minimal and minimal Lagrangian manifolds in ℂ Sb. Math. 195 85-96
  • [2] Mironov A. E.(2013) and ℂP Funct. Anal. Appl. 47 38-49
  • [3] Panov T. E.(2004)Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings Sib. Elektron. Mat. Izv. 1 38-46
  • [4] Mironov A. E.(1977)The Novikov–Veselov hierarchy of equations and integrable deformations of minimal Lagrangian tori in ℂP2 Funct. Anal. Appl. 11 12-26
  • [5] Krichever I. M.(1976)Integration of nonlinear equations by the methods of algebraic geometry Soviet Math. Dokl. 17 947-952
  • [6] Dubrovin B. A.(2003)The SchrÖdinger equation in a periodic field and Riemann surfaces Sib. Math. J. 44 1039-1042
  • [7] Krichever I. M.(2005)On Hamiltonian-minimal Lagrangian tori in C Ann. Global Anal. Geom. 27 1-16
  • [8] Novikov S. P.(2011)Hamiltonian stationary Lagrangian surfaces in C Manuscripta Math. 135 437-468
  • [9] Mironov A. E.(2015)The classification of Hamiltonian stationary Lagrangian tori in CP2 by their spectral data J. Geom. Anal. 25 2645-2666
  • [10] Hui M.(2015)Generalize Lawson tori and Klein bottles Canad. Math. Bull. 58 285-296