Morse Index Bound for Minimal Two Spheres

被引:0
作者
Yuchin Sun
机构
[1] UC Santa Cruz,
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Morse index; Min–max; Minimal sphere; Harmonic map; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a closed manifold of dimension at least three, with non-trivial homotopy group π3(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _3(M)$$\end{document} and a generic metric, we prove that there is a finite collection of harmonic spheres with Morse index bounded by one, with sum of their energies realizing a geometric invariant width.
引用
收藏
相关论文
共 22 条
[1]  
Colding TH(2008)II. Width and finite extinction time of Ricci flow Geom. Topol. 12 2537-2586
[2]  
Minicozzi WP(1985)The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature Invent. Math. 81 387-394
[3]  
Choi HI(1999)Compactification of moduli space of harmonic mappings Comment. Math. Helv. 74 201-237
[4]  
Schoen R(2008)Comparison between second variation of area and second variation of energy of a minimal surface Adv. Calc. Var. 1 223-239
[5]  
Chen J(2015)A counterexample to the energy identity for sequences of Pacific J. Math. 274 107-123
[6]  
Tian G(2017)-harmonic maps Calc. Var. Partial Differ. Equ. 56 16-511
[7]  
Ejiri N(2016)Blowup behavior of harmonic maps with finite index Camb. J. Math. 4 463-633
[8]  
Micallef M(1996)Morse index and multiplicity of min–max minimal hypersurfaces J. Differ. Geom. 44 595-339
[9]  
Li Y(2017)Bubble tree convergence for harmonic maps J. Differ. Geom. 106 317-24
[10]  
Wang Y(1981)Compactness of minimal hypersurfaces with bounded index Ann. Math. (2) 113 1-156