A Computational Model for the Thermal Spallation of Crystalline Rocks

被引:0
作者
Kenneth A. Hart
Julian J. Rimoli
机构
[1] Georgia Institute of Technology,School of Aerospace Engineering
[2] University of California Irvine,Department of Mechanical and Aerospace Engineering
来源
Rock Mechanics and Rock Engineering | 2023年 / 56卷
关键词
Spallation; Direct numerical simulation; Finite element modeling;
D O I
暂无
中图分类号
学科分类号
摘要
Thermal spallation is the erosion of brittle materials subjected to high heat fluxes, such as a hot fire in a concrete structure. While experimental investigations provide valuable data on the spallation process, they lack generality to be extrapolated to other materials or loading conditions. This paper presents a numerical method for predicting bulk quantities of the spallation process, such as the average recession rate, for crystalline materials. The method is based on direct numerical simulations of the microstructure. The crystal grains and their boundaries are modeled with finite elements and cohesive zones. These elements have anisotropic and temperature-dependent physical properties, a novel level of fidelity and one that accurately captures known crystal phenomena including the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}–β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} quartz transition. These models of the crystalline material and the thermal spallation process are validated against experiment results for Barre granite, and then applied to predict the thermal spallation of Martian basalt.
引用
收藏
页码:8235 / 8254
页数:19
相关论文
共 147 条
  • [1] Austin SA(1992)Jet-blast temperature-resistant concrete for Harrier aircraft pavements Struct Eng 70 427-432
  • [2] Robins PJ(2020)Chemical dissolution drilling of Barre granite using a sodium hydroxide enhanced supercritical water jet Rock Mech Rock Eng 53 483-496
  • [3] Richards MR(2003)Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria Comput Methods Appl Mech Eng 192 3887-3908
  • [4] Beentjes I(2015)A length-dependent model for the thermomechanical response of ceramics J Mech Phys Solids 82 82-96
  • [5] Bender JT(1895)Decomposition of rocks in Brazil Bull Geol Soc Am 7 255-314
  • [6] Hawkins AJ(2016)Elasticity of plagioclase feldspars J Geophys Res Solid Earth 121 663-675
  • [7] Bouchard PO(1988)Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake Contrib Mineral Petrol 99 292-305
  • [8] Bay F(2005)Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation J Mech Phys Solids 53 261-301
  • [9] Chastel Y(1963)Biotite–hydrobiotite–vermiculite in soils Nature 198 409-410
  • [10] Bouquet JBP(2013)Micromechanical model for the rate dependence of the fracture toughness anisotropy of Barre granite Int J Rock Mech Min Sci 63 113-121