Stability Theorems for Chiral Bag Boundary Conditions

被引:0
|
作者
P. Gilkey
K. Kirsten
机构
[1] University of Oregon,Department of Mathematics
[2] Baylor University,Department of Mathematics
来源
关键词
bag boundary conditions; operator of Dirac type; zeta and eta invariants; variational formulas;
D O I
暂无
中图分类号
学科分类号
摘要
We study asymptotic expansions of the smeared L2-traces Fe−tP^2 and FPe−tP^2, where P is an operator of Dirac type and F is an auxiliary smooth endomorphism. We impose chiral bag boundary conditions depending on an angle θ. Studying the θ-dependence of the above trace invariants, θ-independent pieces are identified. The associated stability theorems allow one to show the regularity of the eta function for the problem and to determine the most important heat kernel coefficient on a four dimensional manifold.
引用
收藏
页码:147 / 163
页数:16
相关论文
共 50 条
  • [1] Stability theorems for chiral bag boundary conditions
    Gilkey, P
    Kirsten, K
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 73 (02) : 147 - 163
  • [2] Chiral bag boundary conditions on the ball
    Esposito, G
    Kirsten, K
    PHYSICAL REVIEW D, 2002, 66 (08):
  • [3] Chiral anomaly with MIT bag boundary conditions
    Marachevsky, VN
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (06) : 651 - 656
  • [4] Heat kernel coefficients for chiral bag boundary conditions
    Esposito, G
    Gilkey, P
    Kirsten, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (10): : 2259 - 2276
  • [5] Strong ellipticity and spectral properties of chiral bag boundary conditions
    Beneventano, CG
    Gilkey, PB
    Kirsten, K
    Santangelo, EM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (45): : 11533 - 11543
  • [6] Spectral asymmetry for bag boundary conditions
    Beneventano, CG
    Santangelo, EM
    Wipf, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44): : 9343 - 9354
  • [7] KKM type theorems with boundary conditions
    Musin, Oleg R.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (03) : 2037 - 2049
  • [8] KKM type theorems with boundary conditions
    Oleg R. Musin
    Journal of Fixed Point Theory and Applications, 2017, 19 : 2037 - 2049
  • [9] Modified spectral boundary conditions in the bag model
    Abrikosov, A. A., Jr.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21): : 6109 - 6115
  • [10] Band rearrangement through the 2D-Dirac equation: Comparing the APS and the chiral bag boundary conditions
    Iwai, T.
    Zhilinskii, B.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (05): : 1081 - 1106