Invariants of Algebraic Automorphisms

被引:0
作者
Kun-Shan Liu
机构
[1] National Taiwan University,Department of Mathematics
来源
Algebras and Representation Theory | 2013年 / 16卷
关键词
Prime ring; Extended centroid; Algebraic automorphism; Invariant; Inner (outer) degree; PI-degree; 16W20; 16N60; 16R50;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring with extended centroid C and let σ be a C-algebraic automorphism of R. We let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{(\sigma)}\mathop{=}\limits^{\rm def.}\{x\in R\mid \sigma(x)=x\}$\end{document}, the subring of invariants of σ in R, and let Out-deg(σ) and Inn-deg(σ) denote the outer and inner degrees of σ, respectively. In the paper we first prove the nilpotence of the prime radical of R(σ) with a bound and characterize the semiprimeness and primeness of R(σ). Moreover, we show that if R(σ) is a prime PI-ring, then PI-deg(R) = PI-deg(R(σ)) × Inn-deg(σ).
引用
收藏
页码:1233 / 1242
页数:9
相关论文
共 18 条
[11]  
Zhou Y(1981)Extended centroids of skew polynomial rings J. Lond. Math. Soc. 23 246-248
[12]  
Grzeszczuk P(undefined)Central fixed rings undefined undefined undefined-undefined
[13]  
Grzeszczuk P(undefined)undefined undefined undefined undefined-undefined
[14]  
Matczuk J(undefined)undefined undefined undefined undefined-undefined
[15]  
Kharchenko VK(undefined)undefined undefined undefined undefined-undefined
[16]  
Martindale WS(undefined)undefined undefined undefined undefined-undefined
[17]  
Matczuk J(undefined)undefined undefined undefined undefined-undefined
[18]  
Osterburg J(undefined)undefined undefined undefined undefined-undefined