Salt tolerance in rice in vitro: Implication of accumulation of Na+, K+ and proline

被引:0
|
作者
Sangita Basu
Gaurab Gangopadhyay
B.B. Mukherjee
机构
[1] Brahmananda Keshab Chandra College,Department of Botany
[2] Bose Institute,undefined
来源
关键词
growth; K; Na; proline; rice (; L.); salt-shock;
D O I
暂无
中图分类号
学科分类号
摘要
The implication of accumulation of both inorganic (Na+, K+) and organic (proline) solutes were evaluated in unadapted and NaCl-adapted callus of a salt-sensitive (Basmati 370) and a salt-tolerant (SR-26B) cultivar of rice (Oryza sativa L.) after a NaCl shock. Accumulation of Na+,K+ and/or proline in callus was co relatable and the relative presence of these components in tissues after shock treatment was found to be important factors to support differential regrowth capacities of the shock treated calluses. Presence or retention of K+ in rice callus was a key factor for salt tolerance as it was observed to be positively correlated with growth in both the varieties. The results indicated that K+ was the first candidate to counteract the negative water potential of outside milieu, while proline was probably the last metabolic device that rice calluses opted for when exposed to salt stress.
引用
收藏
页码:55 / 64
页数:9
相关论文
共 50 条
  • [21] Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants
    Miranda, Rafael de Souza
    Alvarez-Pizarro, Juan Carlos
    Silva Araujo, Celso Marinones
    Prisco, Jose Tarquinio
    Gomes-Filho, Eneas
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (03) : 841 - 852
  • [22] INTRACELLULAR NA+ AND K+ CONTENTS OF ZYGOSACCHAROMYCES-ROUXII MUTANTS DEFECTIVE IN SALT TOLERANCE
    USHIO, K
    OHTSUKA, H
    NAKATA, Y
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1992, 73 (01): : 11 - 15
  • [23] The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response
    Qin, Hua
    Huang, Rongfeng
    MOLECULAR BREEDING, 2020, 40 (05)
  • [24] Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter
    Wang, Zhen
    Hong, Yechun
    Zhu, Guangtao
    Li, Yumei
    Niu, Qingfeng
    Yao, Juanjuan
    Hua, Kai
    Bai, Jinjuan
    Zhu, Yingfang
    Shi, Huazhong
    Huang, Sanwen
    Zhu, Jian-Kang
    EMBO JOURNAL, 2020, 39 (10):
  • [25] Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance
    Sun, Jian
    Dai, Songxiang
    Wang, Ruigang
    Chen, Shaoliang
    Li, Niya
    Zhou, Xiaoyang
    Lu, Cunfu
    Shen, Xin
    Zheng, Xiaojiang
    Hu, Zanmin
    Zhang, Zengkai
    Song, Jin
    Xu, Yue
    TREE PHYSIOLOGY, 2009, 29 (09) : 1175 - 1186
  • [26] Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants
    Rafael de Souza Miranda
    Juan Carlos Alvarez-Pizarro
    Celso Marinones Silva Araújo
    José Tarquinio Prisco
    Enéas Gomes-Filho
    Acta Physiologiae Plantarum, 2013, 35 : 841 - 852
  • [27] Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress
    Mostofa, Mohammad G.
    Saegusa, Daisuke
    Fujita, Masayuki
    Lam-Son Phan Tran
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [28] Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl- accumulation in rice
    Li, Xiaojiang
    Yu, Bingjun
    Cui, Yiqing
    Yin, Yifan
    PLANT GROWTH REGULATION, 2017, 83 (03) : 441 - 454
  • [29] CATION ACCUMULATION BY MICROSOMAL (NA+ +K+)-ACTIVATED ATPASE
    CHARNOCK, JS
    OPIT, LJ
    CASELYSM.JR
    BIOCHIMICA ET BIOPHYSICA ACTA, 1966, 126 (02) : 350 - &
  • [30] Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis
    Silva, E. N.
    Silveira, J. A. G.
    Rodrigues, C. R. F.
    Viegas, R. A.
    PLANT BIOLOGY, 2015, 17 (05) : 1023 - 1029