Some Properties of Strictly Positive Doubly Stochastic Matrices

被引:0
作者
Hossein Ebrahimpoor
Noha Eftekhari
Ali Bayati Eshkaftaki
机构
[1] Shahrekord University,Department of Pure Mathematics, Faculty of Mathematical Sciences
来源
Results in Mathematics | 2023年 / 78卷
关键词
Linear operator; doubly stochastic matrix; matrix form; Primary 15A86; Secondary 47B60; 47L07;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to investigate some properties of the set of all strictly positive doubly stochastic I×I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times I$$\end{document} matrices denoted by Ω+(I),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}(I),$$\end{document} which is the subset of all doubly stochastic I×I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times I$$\end{document} matrices denoted by Ω(I),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (I),$$\end{document} where I is an arbitrary nonempty set. For uncountable set I,  we have Ω+(I)=∅,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}(I)=\emptyset ,$$\end{document} so we consider I=N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=\mathbb {N},$$\end{document} and in this case Ω+(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}(I)$$\end{document} and Ω(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (I)$$\end{document} are denoted by Ω+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}$$\end{document} and Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ,$$\end{document} respectively. We prove that cardΩ+=cardΩ=cardR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{card}\,\Omega ^{+}=\textrm{card}\,\Omega =\textrm{card}\,{\mathbb {R}}$$\end{document}. We show that Ω+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}$$\end{document} is closed under countable convex combination. Since Ω+⊂DS(ℓp),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}\subset {\mathcal {D}}{\mathcal {S}}(\ell ^{p}),$$\end{document} where DS(ℓp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}{\mathcal {S}}(\ell ^{p})$$\end{document} is the set of all doubly stochastic operators on ℓp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^{p},$$\end{document} so we consider p-norm for the elements of Ω+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}$$\end{document}. Also, for 1≤p<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<\infty ,$$\end{document} we show that Ω+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{+}$$\end{document} is not closed. For 1<p<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty ,$$\end{document} there exists D∈Ω+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\in \Omega ^{+}$$\end{document} with ‖D‖<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert D\Vert <1$$\end{document} and 0∈Ω+¯,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \overline{\Omega ^{+}},$$\end{document} morever for α∈(0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1],$$\end{document} there is D∈Ω+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\in \Omega ^{+}$$\end{document} such that ‖D‖=α.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert D\Vert =\alpha .$$\end{document} There exists D∈Ω+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\in \Omega ^{+}$$\end{document} which is compact. Some relevant examples are indicated.
引用
收藏
相关论文
共 12 条
  • [1] Ando T(1989)Majorization, doubly stochastic matrices, and comparison of eigenvalues Linear Algebra Appl. 118 163-248
  • [2] Bahrami F(2012)Linear preservers of majorization on Linear Algebra Appl. 436 3177-3195
  • [3] Eshkaftaki AB(2015)Convex majorization on discrete Linear Algebra Appl. 474 124-140
  • [4] Manjegani SM(2021) spaces J. Math. Anal. Appl. 498 178-183
  • [5] Eshkaftaki AB(1965)Doubly (sub)stochastic operators on Glasgow Math. Assoc. Proc. 7 2087-2095
  • [6] Eftekhari N(2015) spaces Filomat 29 2657-2673
  • [7] Eshkaftaki AB(2021)The semigroup of doubly stochastic matrices Linear Multilinear Algebra 69 undefined-undefined
  • [8] Farahat HK(undefined)Majorization and doubly stochastic operators undefined undefined undefined-undefined
  • [9] Ljubenović M(undefined)Linear preservers of DSS-weak majorization on discrete Lebesgue space undefined undefined undefined-undefined
  • [10] Ljubenović M(undefined) when undefined undefined undefined-undefined