The complex Jacobi iterative method for non-paraxial beam propagation in nonlinear optical waveguides

被引:0
作者
Khai Q. Le
Peter Bienstman
机构
[1] Ghent University,Photonics Research Group, Department of Information Technology
来源
Optical and Quantum Electronics | 2009年 / 41卷
关键词
Non-paraxial beam propagation; Nonlinear optical waveguides; Complex Jacobi iteration;
D O I
暂无
中图分类号
学科分类号
摘要
The recently introduced beam propagation method using complex Jacobi iteration adapted for modeling of non-paraxial beam propagation in nonlinear optical waveguides is presented in this paper. The beam propagation equation is based on our recently proposed modified Padé(1,1) approximant operator. The resulting approach is very efficient and well-suited for large structures with long propagation paths.
引用
收藏
页码:705 / 709
页数:4
相关论文
共 20 条
[1]  
De-Oliva-Rubio J.(2004)Fast semivectorial nonlinear finite-difference beam propagation method Microwave Opt. Technol. Lett. 40 73-77
[2]  
Molina-Fernandez I.(1992)Wide-angle beam propagation using Padé approximant operators Opt. Lett. 17 1426-1428
[3]  
Hadley G.R.(2009)Complex Padé approximant operators for wide-angle beam propagation Opt. Commun. 282 1252-1254
[4]  
Le K.Q.(2008)The complex Jacobi iterative method for three-dimensional wide-anglebeam propagation Opt. Express 16 17021-17030
[5]  
Le K.Q.(2006)Using the complex Jacobi method to simulate Kerr non-linear photonic components Opt. Quantum. Electron. 38 35-44
[6]  
Godoy-Rubio R.(1986)Multisoliton emission from a nonlinear waveguide Phys. Rev. A 34 4442-4444
[7]  
Bienstman P.(1999)A wide-angle finite element beam propagation method with perfectly matched layers for nonlinear optical waveguides J. Lightwave Technol. 17 1909-1915
[8]  
Hadley G.R.(undefined)undefined undefined undefined undefined-undefined
[9]  
Vandersteegen P.(undefined)undefined undefined undefined undefined-undefined
[10]  
Maes B.(undefined)undefined undefined undefined undefined-undefined