Virial functional and dynamics for nonlinear Schrödinger equations of local interactions

被引:0
作者
Takafumi Akahori
Hiroaki Kikuchi
Takeshi Yamada
机构
[1] Shizuoka University,
[2] Tsuda University,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2018年 / 25卷
关键词
Virial functional; Ground state; Stability; Scattering; Blowup; Variational method; Limiting profile; 35J20; 35Q55; 37K40; 37K45;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to verify that the functional in the virial identity classifies the dynamics for nonlinear Schrödinger equations of local interactions. In particular, we give a condition under that there exist stable ground states. Our proof of this stability result is based on the ideas in Colin (Ann Inst H Pincaré 23:753–764, 2006) and Shatah (Math Phys 91:313–327, 1983). However, we emphasize that our argument does not use the strict convexity of the H˙1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{1}$$\end{document}-norm of ground state with respect to ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}: a key lemma is Lemma 4.8 below. Furthermore, we discuss the limiting profile of ground states (see Theorem 4.4).
引用
收藏
相关论文
共 38 条
[1]  
Akahori T(2013)Blowup and scattering problems for the nonlinear Schrödinger equations Kyoto J. Math. 53 629-672
[2]  
Nawa H(2012)Scattering and blowup problems for a class of nonlinear Schrödinger equations Differ. Integral Equ. 25 1075-1118
[3]  
Akahori T(1983)Nonlinear scalar field equations. I. Existence of a ground state Arch. Ration. Mech. Anal. 82 313-345
[4]  
Kikuchi H(1983)A relation between pointwise convergence of functions and convergence of functionals Proc. Am. Math. Soc. 88 486-490
[5]  
Nawa H(1990)The Cauchy problem for the critical nonlinear Schrödinger equation in Nonlin. Anal. 14 807-836
[6]  
Berestycki H(2006)Stability of solitary waves for derivative nonlinear Schrödinger equation Ann. Inst. H. Poincaré 23 753-764
[7]  
Lions PL(1992)Homoclinic type solutions for a semilinear elliptic PDE on Commun. Pure Appl. Math. 45 1217-1269
[8]  
Brezis H(2008)Scattering for the non-radial 3D cubic nonlinear Schrödinger equation Math. Res. Lett. 15 1233-1250
[9]  
Lieb EH(1989)Stability of coulomb systems with magnetic fields I. The one-electron atom Commun. Math. Phys. 78 160-190
[10]  
Cazenave T(1981)Symmetry of positive solutions of nonlinear elliptic equations in Math. Anal. Appl. 7 369-402