Norm of the Hausdorff Operator on the Real Hardy Space H1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({{\mathbb {R}}})$$\end{document}

被引:0
作者
Ha Duy Hung
Luong Dang Ky
Thai Thuan Quang
机构
[1] Ton Duc Thang University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[2] Quy Nhon University,Department of Mathematics
关键词
Hausdorff operator; Hardy space; Hilbert transform; Maximal function; Holomorphic function; 47B38; 42B30;
D O I
10.1007/s11785-017-0651-y
中图分类号
学科分类号
摘要
Let φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be a nonnegative integrable function on (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document}. It is well-known that the Hausdorff operator Hφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}_\varphi $$\end{document} generated by φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is bounded on the real Hardy space H1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({{\mathbb {R}}})$$\end{document}. The aim of this paper is to give the exact norm of Hφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}_\varphi $$\end{document}. More precisely, we prove that ‖Hφ‖H1(R)→H1(R)=∫0∞φ(t)dt.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert {{\mathcal {H}}}_\varphi \Vert _{H^1({{\mathbb {R}}})\rightarrow H^1({{\mathbb {R}}})}= {\mathop {\int }\limits _{0}^{\infty }} \varphi (t)dt. \end{aligned}$$\end{document}
引用
收藏
页码:235 / 245
页数:10
相关论文
共 18 条
  • [1] Andersen KF(2003)Boundedness of Hausdorff operators on Acta Sci. Math. (Szeged) 69 409-418
  • [2] Chen J(2016), and Acta Math. Hung. 150 142-152
  • [3] Fan D(2014)The Hausdorff operator on the Hardy space Analysis (Berlin) 34 319-337
  • [4] Zhu X(1972)Hausdorff operator on real Hardy spaces Acta Math. 129 137-193
  • [5] Fan D(2013) spaces of several variables Eurasian Math. J. 4 101-141
  • [6] Lin X(2000)Hausdorff operators on Hardy spaces Proc. Am. Math. Soc. 128 1391-1396
  • [7] Fefferman C(2001)The Hausdorff operator is bounded on the real Hardy space Analysis (Munich) 21 107-118
  • [8] Stein EM(2002)The multi-parameter Hausdorff operator is bounded on the product Hardy space Acta Math. Hung. 97 133-143
  • [9] Liflyand E(2005)Commuting relations for Hausdorff operators and Hilbert transforms on real Hardy spaces Anal. Math. 31 31-41
  • [10] Liflyand E(2016)Multivariate Hausdorff operators on the spaces J. Math. Anal. Appl. 433 31-48