Sequential Monte Carlo on large binary sampling spaces

被引:0
作者
Christian Schäfer
Nicolas Chopin
机构
[1] Centre de Recherche en Économie et Statistique,CEntre de REcherches en MAthématiques de la DEcision
[2] Université Paris-Dauphine,undefined
[3] Ecole Nationale de la Statistique et de l’Administration,undefined
来源
Statistics and Computing | 2013年 / 23卷
关键词
Adaptive Monte Carlo; Multivariate binary data; Sequential Monte Carlo; Linear regression; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
A Monte Carlo algorithm is said to be adaptive if it automatically calibrates its current proposal distribution using past simulations. The choice of the parametric family that defines the set of proposal distributions is critical for good performance. In this paper, we present such a parametric family for adaptive sampling on high dimensional binary spaces.
引用
收藏
页码:163 / 184
页数:21
相关论文
共 71 条
[1]  
Albert A.(1984)On the existence of maximum likelihood estimates in logistic regression models Biometrika 72 1-10
[2]  
Anderson J.A.(2008)A tutorial on adaptive MCMC Stat. Comput. 18 343-373
[3]  
Andrieu C.(2010)Evolutionary stochastic search for Bayesian model exploration Bayesian Anal. 5 583-618
[4]  
Thoms J.(2008)Adaptive importance sampling in general mixture classes Stat. Comput. 18 447-459
[5]  
Bottolo L.(1999)Improved Particle Filter for nonlinear problems IEE Proc. Radar Sonar Navig. 146 2-7
[6]  
Richardson S.(2002)A sequential particle filter method for static models Biometrika 89 539-101
[7]  
Cappé O.(1998)Protein construct storage: Bayesian variable selection and prediction with mixtures J. Biopharm. Stat. 8 431-408
[8]  
Douc R.(2011)Bayesian adaptive sampling for variable selection and model averaging J. Comput. Graph. Stat. 20 80-436
[9]  
Guillin A.(1994)A note on the quadratic exponential binary distribution Biometrika 81 403-304
[10]  
Marin J.(2002)On some models for multivariate binary variables parallel in complexity with the multivariate Gaussian distribution Biometrika 89 462-899