On k-Vertex-Edge Domination of Graph

被引:0
作者
Debojyoti Bhattacharya
Subhabrata Paul
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Patna,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2024年 / 47卷
关键词
-Vertex-edge domination; NP-completeness; Approximation algorithm; APX-completeness; 05C69; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a simple undirected graph. The open neighbourhood of a vertex v in G is defined as NG(v)={u∈V|uv∈E}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_G(v)=\{u\in V~|~ uv\in E\}$$\end{document}, whereas the closed neighbourhood is defined as NG[v]=NG(v)∪{v}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_G[v]= N_G(v)\cup \{v\}$$\end{document}. For an integer k, a subset D⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\subseteq V$$\end{document} is called a k-vertex-edge dominating set of G if for every edge uv∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E$$\end{document}, |(NG[u]∪NG[v])∩D|≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|(N_G[u]\cup N_G[v]) \cap D|\ge k$$\end{document}. In k-vertex-edge domination problem, our goal is to find a k-vertex-edge dominating set of minimum cardinality of an input graph G. In this paper, we first prove that the decision version of k-vertex-edge domination problem is NP-complete for chordal graphs. On the positive side, we design a linear time algorithm for finding a minimum k-vertex-edge dominating set of tree. We also prove that there is a O(log(Δ(G)))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log (\Delta (G)))$$\end{document}-approximation algorithm for this problem in general graph G, where Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} is the maximum degree of G. Then, we show that for a graph G with n vertices, this problem cannot be approximated within a factor of (1-ϵ)lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\epsilon ) \ln n$$\end{document} for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} unless NP⊆DTIME(|V|O(loglog|V|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NP\subseteq {\textrm{DTIME}}(|V|^{O(\log \log |V|)})$$\end{document}. Finally, we prove that it is APX-complete for graphs with bounded degree k+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+3$$\end{document}.
引用
收藏
相关论文
共 19 条
[1]  
Boutrig R(2016)Vertex-edge domination in graphs Aequ. Math. 90 355-366
[2]  
Chellali M(2022)Vertex-edge domination in unit disk graphs Discret. Appl. Math. 319 351-361
[3]  
Haynes TW(2014)Bounds on the vertex-edge domination number of a tree C. R. Math. 352 363-366
[4]  
Hedetniemi ST(2021)Double vertex-edge domination in graphs: complexity and algorithms J. Appl. Math. Comput. 66 245-262
[5]  
Jena SK(2019)Vertex-edge domination in graphs Aequ. Math. 93 735-742
[6]  
Das GK(2022)Double vertex-edge domination in trees Bull. Korean Math. Soc. 59 167-177
[7]  
Krishnakumari B(2023)Polynomial time algorithm for k-vertex-edge dominating problem in interval graphs J. Comb. Optim. 45 45-83
[8]  
Venkatakrishnan YB(2004)Hardness results and approximation algorithms of k-tuple domination in graphs Inf. Process. Lett. 89 75-undefined
[9]  
Krzywkowski M(undefined)undefined undefined undefined undefined-undefined
[10]  
Naresh Kumar H(undefined)undefined undefined undefined undefined-undefined