Generalized Invexity and Duality in Multiobjective Programming Problems

被引:0
作者
Brahim Aghezzaf
Mohamed Hachimi
机构
[1] Faculté des Sciences Aïn Chock,Département de Mathématiques et d'Informatique
[2] Faculté des Sciences Aïn Chock,Département de Mathématiques et d'Informatique
来源
Journal of Global Optimization | 2000年 / 18卷
关键词
Multiobjective programming; Efficient solution; Convexity; Invexity; Type I; Weak; Strong; Converse duality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the multiobjective programming problem with inequality constraints. We introduce new classes of generalized type I vector-valued functions. Duality theorems are proved for Mond–Weir and general Mond–Weir type duality under the above generalized type I assumptions.
引用
收藏
页码:91 / 101
页数:10
相关论文
共 50 条
[41]   (p, r)-invexity in multiobjective programming [J].
Antczak, T .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 152 (01) :72-87
[42]   Saddle point and generalized convex duality for multiobjective programming [J].
Yan Z. ;
Li S. .
Journal of Applied Mathematics and Computing, 2004, 15 (1-2) :227-235
[43]   SECOND-ORDER UNIVEX FUNCTIONS AND GENERALIZED DUALITY MODELS FOR MULTIOBJECTIVE PROGRAMMING PROBLEMS CONTAINING ARBITRARY NORMS [J].
Zalmai, G. J. .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) :727-753
[44]   Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized (F, α, ρ, θ)-d-V-univex functions [J].
Jayswal, Anurag ;
Ahmad, I. ;
Al-Homidan, S. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) :81-90
[45]   Third Order Symmetric Duality in Multiobjective Programming Problems [J].
S. K. Padhan ;
N. Behera ;
G. Biswal .
International Journal of Applied and Computational Mathematics, 2025, 11 (4)
[46]   Mixed type converse duality in multiobjective programming problems [J].
Yang, XM ;
Yang, XQ ;
Teo, KL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) :394-398
[47]   DUALITY FOR A CLASS OF NONS MOOTH MULTIOBJECTIVE PROGRAMMING PROBLEMS [J].
PENG Jianwen(Department of Mathematics ;
Chongqing Normal University .
Journal of Systems Science & Complexity, 2005, (01) :74-85
[48]   Optimality and duality for invex nonsmooth multiobjective programming problems [J].
Kim, DS ;
Schaible, S .
OPTIMIZATION, 2004, 53 (02) :165-176
[49]   On Sufficiency and Duality for Multiobjective Programming Problems Using Convexificators [J].
Jaisawal, Pushkar ;
Laha, Vivek .
FILOMAT, 2022, 36 (09) :3119-3139
[50]   Symmetric duality for minimax mixed integer programming problems with pseudo-invexity [J].
Mishra, S. K. ;
Wang, S. Y. ;
Lai, K. K. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 198 (01) :37-42