Generalized Invexity and Duality in Multiobjective Programming Problems

被引:0
作者
Brahim Aghezzaf
Mohamed Hachimi
机构
[1] Faculté des Sciences Aïn Chock,Département de Mathématiques et d'Informatique
[2] Faculté des Sciences Aïn Chock,Département de Mathématiques et d'Informatique
来源
Journal of Global Optimization | 2000年 / 18卷
关键词
Multiobjective programming; Efficient solution; Convexity; Invexity; Type I; Weak; Strong; Converse duality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the multiobjective programming problem with inequality constraints. We introduce new classes of generalized type I vector-valued functions. Duality theorems are proved for Mond–Weir and general Mond–Weir type duality under the above generalized type I assumptions.
引用
收藏
页码:91 / 101
页数:10
相关论文
共 50 条
[21]   Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized univex functions [J].
Long Xianjun .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (06) :1002-1018
[22]   Sufficiency and duality of fractional integral programming with generalized invexity [J].
Lai, Hang-Chin .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06) :1685-1695
[23]   Nonsmooth multiobjective continuous-time problems with generalized invexity [J].
Nobakhtian, S. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (04) :593-606
[24]   Nonsmooth multiobjective continuous-time problems with generalized invexity [J].
S. Nobakhtian .
Journal of Global Optimization, 2009, 43 :593-606
[25]   THE WEIGHTING METHOD AND MULTIOBJECTIVE PROGRAMMING UNDER NEW CONCEPTS OF GENERALIZED (Φ, ρ)-INVEXITY [J].
Antczak, Tadeusz ;
Arana-Jimenez, Manuel .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (02) :3-12
[26]   Optimality and duality for multiobjective fractional problems with r-invexity [J].
Lee, Jin-Chirng ;
Ho, Shun-Chin .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (03) :719-740
[27]   Higher-order symmetric duality in multiobjective programming problems under higher-order invexity [J].
Padhan, S. K. ;
Nahak, C. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :1705-1712
[28]   Nondifferentiable multiobjective programming under generalized dl-invexity [J].
Slimani, Hachem ;
Radjef, Mohammed Said .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 202 (01) :32-41
[29]   Generalized F-invexity and duality for programming problems with square root terms in objectives and constraints [J].
Bhatia, D ;
Sharma, A .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (11) :1391-1404
[30]   Duality for Multiobjective Variational Problems under Second-Order (Φ, ρ)-Invexity [J].
Singh, Vivek ;
Ahmad, I ;
Gupta, S. K. ;
Al-Homidan, S. .
FILOMAT, 2021, 35 (02) :605-615