There is no known syntactic characterization of the class of finite definitions in terms of a set of basic definitions and a set of basic operators under which the class is closed. Furthermore, it is known that the basic propositional operators do not preserve finiteness. In this paper I survey these problems and explore operators that do preserve finiteness. I also show that every definition that uses only unary predicate symbols and equality is bound to be finite. © 2001 Kluwer Academic Publishers.