On the Perturbation Expansion of the KPZ Equation

被引:0
作者
Kay Jörg Wiese
机构
[1] FB Physik,
[2] Universität Essen,undefined
来源
Journal of Statistical Physics | 1998年 / 93卷
关键词
KPZ equation; growth processes;
D O I
暂无
中图分类号
学科分类号
摘要
We present a simple argument to show that the β-function of the d-dimensional KPZ equation (d≥2) is to all orders in perturbation theory given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\beta (g_R ) = (d - 2)g_R - [2/(8\pi )^{d/2} ]{\text{ }}\Gamma (2 - d/2)g_R^2 $$ \end{document} Neither the dynamical exponent z nor the roughness exponent ζ have any correction in any order of perturbation theory. This shows that standard perturbation theory cannot attain the strong-coupling regime and in addition breaks down at d = 4. We also calculate a class of correlation functions exactly.
引用
收藏
页码:143 / 154
页数:11
相关论文
共 20 条
[1]  
Kardar M.(1986)Dynamic scaling of growing interfaces Phys. Rev. Lett. 56 889-892
[2]  
Parisi G.(1995)Kinetic roughening phenomena, stochastic growth, directed polymers and all that Phys. Rep. 254 215-415
[3]  
Zhang Y.-C.(1997)Origins of seale invariance in growth processes Advances in Physics 46 139-282
[4]  
Halpin-Healy T.(1994)Two-loop renormalization group analysis of the Burgers-Kardar-Parisi-Zhang equation Phys. Rev. E 50 1024-1045
[5]  
Zhang Y.(1997)Critical discussion of the 2–loop calculations for the KPZ equation Phys. Rev. E 56 5013-5017
[6]  
Krug J.(1995)On the renormalization of the Kardar-Parisi-Zhang equation Nucl. Phys. B 448 559-574
[7]  
Frey E.(1988)Diffusion of directed polymers in a random environment J. Stat. Phys. 52 609-139
[8]  
Täuber U. C.(1989)Polymers on disordered hierarchical lattices: A nonlinear combination of random variables J. Stat. Phys. 57 89-320
[9]  
Jörg Wiese K.(1996)Directed polymers in high dimensions Phys. Rev. E 54 304-undefined
[10]  
Lässig M.(1989)Burgers equation with correlated noise: Renormalization group analysis and applications to directed polymers and interface growth Phys. Rev. A 39 3053-undefined