On Stationary Solutions of Two-Dimensional Euler Equation

被引:0
作者
Nikolai Nadirashvili
机构
[1] Universite Aix-Marseille,
[2] CNRS,undefined
[3] CMI,undefined
来源
Archive for Rational Mechanics and Analysis | 2013年 / 209卷
关键词
Vorticity; Euler Equation; Stream Function; Steady State Solution; Convex Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of streamlines and stability properties for steady state solutions of the Euler equations for an ideal fluid.
引用
收藏
页码:729 / 745
页数:16
相关论文
共 30 条
[1]  
Alinhac S.(1986)Propagation de l’analyticité locale pour les solutions de léquation dEuler Arch. Rational Mech. Anal. 92 287-296
[2]  
Métivier G.(1966)Sur la géométrie differentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits Ann. Inst. Fourier 16 319-361
[3]  
Arnold V.(1969)On an apriori estimate in the theory of hydrodynamical stability Am. Math. Soc. Transl. 19 267-269
[4]  
Arnold V.I.(1976)Analyticité des solutions périodiques de l’équation d’Euler en deux dimensions C. R. Acad. Sci. Paris Sér. A-B 282 995-998
[5]  
Bardos C.(1928)Démonstration du théorème de M. Hilbert sur la nature analytique des solutions des équations du type elliptique sans l’emploi des séries normales Math. Zeitschrift 28 330-348
[6]  
Benachour S.(1989)Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann Inst. Henri Poincaré 6 295-319
[7]  
Zerner M.(1989)Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex Acta Math. 163 291-309
[8]  
Bernshtein S.(1998)Stable solutions of semilinear elliptic problems in convex domains Selecta Math. (N.S.) 4 1-10
[9]  
Burton G.R.(1970)Groups of diffeomorphisms and the motion of an incompressible fluid Ann. Math. 92 102-163
[10]  
Burton G.R.(2013)Convexity of level sets for elliptic problems in convex domains or convex rings: two counterexamples Preprint arXiv 1304-3355