Lower Bounds for Higher Moments of the Twisted L-functions

被引:0
作者
Guohua Chen
Yanru Jiang
机构
[1] North China University of Water Resources and Electric Power,School of Mathematics and Statistics
来源
Frontiers of Mathematics | 2023年 / 18卷
关键词
Cuspidal Hecke eigenforms; lower bounds; the twisted ; -functions; 11F11; 11F37; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a cuspidal holomorphic or Maass Hecke eigenform for the modular group SL2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{SL}_{2}(\mathbb{Z})$$\end{document}. Let L(s,f⊗χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s,f\otimes\chi)$$\end{document} denote the twisted L-function associated to f twisted by a primitive Dirichlet character χ modulo q. In this paper, we obtain a lower bound for the 2kth moment of central values of the twisted L-functions.
引用
收藏
页码:683 / 696
页数:13
相关论文
共 41 条
[1]  
Blomer V(2017)On moments of twisted Amer. J. Math. 139 707-768
[2]  
Fouvry É(2023)-functions Mem. Amer. Math. Soc. 282 v+148-516
[3]  
Kowalski E(2015)The second moment theory of families of Geom. Funct. Anal. 25 453-248
[4]  
Michel P(2021)-functions—the case of twisted Hecke J. Number Theory 222 233-104
[5]  
Milićević D(2015)-functions Proc. London Math. Soc. (3) 91 33-307
[6]  
Blomer V(1974)The second moment of twisted modular I. Inst. Hautes Études Sci. Publ. Math. 43 273-360
[7]  
Fouvry É(2003)-functions Compositio Math. 139 297-76
[8]  
Kowalski E(1985)Lower bound for higher moments of the mixed product of twisted J. Reine Angew. Math. 357 51-409
[9]  
Michel P(2010)-functions Acta Arith. 145 397-1625
[10]  
Milićević D(2022)Integral moments of Algebra Number Theory 16 1589-14