On the Multifractal Analysis of Branching Random Walk on Galton–Watson Tree with Random Metric

被引:0
作者
Najmeddine Attia
机构
[1] Faculté des Sciences de Monastir,Département de Mathématiques
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Galton–Watson tree; Random walk; Hausdorff and packing dimensions; 60G50; 11K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a branching random walk SnX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_nX(t)$$\end{document} on a supercritical random Galton–Watson tree. We compute the Hausdorff and packing dimensions of the level set E(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\alpha )$$\end{document} of infinite branches in the boundary of tree endowed with random metric along which the average of SnX(t)/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n X(t)/n$$\end{document} have a given limit point.
引用
收藏
页码:90 / 102
页数:12
相关论文
共 50 条
[41]   Limit Theorems for Local Particle Numbers in Branching Random Walk [J].
Bulinskaya, E. Vl .
DOKLADY MATHEMATICS, 2012, 85 (03) :403-405
[42]   Large deviations for a symmetric branching random walk on a multidimensional lattice [J].
S. A. Molchanov ;
E. B. Yarovaya .
Proceedings of the Steklov Institute of Mathematics, 2013, 282 :186-201
[43]   Electrical Resistance of the Low Dimensional Critical Branching Random Walk [J].
Antal A. Járai ;
Asaf Nachmias .
Communications in Mathematical Physics, 2014, 331 :67-109
[44]   Limit theorems for local particle numbers in branching random walk [J].
E. Vl. Bulinskaya .
Doklady Mathematics, 2012, 85 :403-405
[45]   On the rate of convergence of a regular martingale related to a branching random walk [J].
Iksanov O.M. .
Ukrainian Mathematical Journal, 2006, 58 (3) :368-387
[46]   Once edge-reinforced random walk on a tree [J].
Rick Durrett ;
Harry Kesten ;
Vlada Limic .
Probability Theory and Related Fields, 2002, 122 :567-592
[47]   On the first passage time of a simple random walk on a tree [J].
Bapat, R. B. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (10) :1552-1558
[48]   Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive [J].
Croydon, David ;
Kumagai, Takashi .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :1419-1441
[50]   INTRINSIC BRANCHING STRUCTURE WITHIN (L-1) RANDOM WALK IN RANDOM ENVIRONMENT AND ITS APPLICATIONS [J].
Hong, Wenming ;
Wang, Huaming .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 16 (01)