On the Multifractal Analysis of Branching Random Walk on Galton–Watson Tree with Random Metric

被引:0
作者
Najmeddine Attia
机构
[1] Faculté des Sciences de Monastir,Département de Mathématiques
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Galton–Watson tree; Random walk; Hausdorff and packing dimensions; 60G50; 11K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a branching random walk SnX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_nX(t)$$\end{document} on a supercritical random Galton–Watson tree. We compute the Hausdorff and packing dimensions of the level set E(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\alpha )$$\end{document} of infinite branches in the boundary of tree endowed with random metric along which the average of SnX(t)/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n X(t)/n$$\end{document} have a given limit point.
引用
收藏
页码:90 / 102
页数:12
相关论文
共 50 条
[31]   INTRINSIC BRANCHING STRUCTURE WITHIN RANDOM WALK ON Z [J].
Wang, H. ;
Hong, W. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2014, 58 (04) :640-659
[32]   Branching capacity of a random walk in Z5 [J].
Bai, Tianyi ;
Delmas, Jean-Francois ;
Hu, Yueyun .
ELECTRONIC JOURNAL OF PROBABILITY, 2025, 30
[33]   Extremum of a time-inhomogeneous branching random walk [J].
Hou, Wanting ;
Zhang, Xiaoyue ;
Hong, Wenming .
FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (02) :459-478
[34]   The multifractal spectrum of a sea clutter using a random walk model [J].
Jingbo He ;
Jianghu Xu .
Acta Oceanologica Sinica, 2017, 36 :23-26
[35]   Extremum of a time-inhomogeneous branching random walk [J].
Wanting Hou ;
Xiaoyue Zhang ;
Wenming Hong .
Frontiers of Mathematics in China, 2021, 16 :459-478
[36]   Maximal displacement in a branching random walk through interfaces [J].
Mallein, Bastien .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
[37]   BRANCHING STRUCTURE FOR THE TRANSIENT (1, R)-RANDOM WALK IN RANDOM ENVIRONMENT AND ITS APPLICATIONS [J].
Hong, Wenming ;
Zhang, Lin .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) :589-618
[38]   STRUCTURAL RESULTS FOR THE TREE BUILDER RANDOM WALK [J].
Englander, Janos ;
Iacobelli, Giulio ;
Pete, Gabor ;
Ribeiro, Rodrigo .
ANNALS OF APPLIED PROBABILITY, 2025, 35 (02) :822-857
[39]   Branching and tree indexed random walks on fractals [J].
Telcs, A ;
Wormald, NC .
JOURNAL OF APPLIED PROBABILITY, 1999, 36 (04) :999-1011
[40]   Least gradient functions in metric random walk spaces [J].
Gorny, Wojciech ;
Mazon, Jose M. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27