On the Multifractal Analysis of Branching Random Walk on Galton–Watson Tree with Random Metric

被引:0
作者
Najmeddine Attia
机构
[1] Faculté des Sciences de Monastir,Département de Mathématiques
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Galton–Watson tree; Random walk; Hausdorff and packing dimensions; 60G50; 11K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a branching random walk SnX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_nX(t)$$\end{document} on a supercritical random Galton–Watson tree. We compute the Hausdorff and packing dimensions of the level set E(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\alpha )$$\end{document} of infinite branches in the boundary of tree endowed with random metric along which the average of SnX(t)/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n X(t)/n$$\end{document} have a given limit point.
引用
收藏
页码:90 / 102
页数:12
相关论文
共 50 条
[21]   Reduced subcritical Galton-Watson processes in a random environment [J].
Fleischmann, K ;
Vatutin, VA .
ADVANCES IN APPLIED PROBABILITY, 1999, 31 (01) :88-111
[22]   A weakly supercritical mode in a branching random walk [J].
Antonenko E.A. .
Moscow University Mathematics Bulletin, 2016, 71 (2) :68-70
[23]   Martingale convergence and the stopped branching random walk [J].
A.E. Kyprianou .
Probability Theory and Related Fields, 2000, 116 :405-419
[24]   RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY WITH A BRANCHING RANDOM WALK [J].
Matzinger, Heinrich ;
Pachon, Angelica ;
Popov, Serguei .
ANNALS OF APPLIED PROBABILITY, 2017, 27 (02) :651-685
[25]   Large deviations for random walks on Galton–Watson trees: averaging and uncertainty [J].
Amir Dembo ;
Nina Gantert ;
Yuval Peres ;
Ofer Zeitouni .
Probability Theory and Related Fields, 2002, 122 :241-288
[26]   Gradient flows in metric random walk spaces [J].
Mazón J.M. ;
Solera M. ;
Toledo J. .
SeMA Journal, 2022, 79 (1) :3-35
[27]   The multifractal spectrum of a sea clutter using a random walk model [J].
HE Jingbo ;
XU Jianghu .
Acta Oceanologica Sinica, 2017, 36 (09) :23-26
[28]   The multifractal spectrum of a sea clutter using a random walk model [J].
He Jingbo ;
Xu Jianghu .
ACTA OCEANOLOGICA SINICA, 2017, 36 (09) :23-26
[29]   A subdiffusive behaviour of recurrent random walk in random environment on a regular tree [J].
Yueyun Hu ;
Zhan Shi .
Probability Theory and Related Fields, 2007, 138 :521-549
[30]   A subdiffusive behaviour of recurrent random walk in random environment on a regular tree [J].
Hu, Yueyun ;
Shi, Zhan .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (3-4) :521-549