On the Multifractal Analysis of Branching Random Walk on Galton–Watson Tree with Random Metric

被引:0
|
作者
Najmeddine Attia
机构
[1] Faculté des Sciences de Monastir,Département de Mathématiques
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Galton–Watson tree; Random walk; Hausdorff and packing dimensions; 60G50; 11K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a branching random walk SnX(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_nX(t)$$\end{document} on a supercritical random Galton–Watson tree. We compute the Hausdorff and packing dimensions of the level set E(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\alpha )$$\end{document} of infinite branches in the boundary of tree endowed with random metric along which the average of SnX(t)/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n X(t)/n$$\end{document} have a given limit point.
引用
收藏
页码:90 / 102
页数:12
相关论文
共 50 条