共 34 条
- [21] Some Opial-type integral inequalities via (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-calculus Journal of Inequalities and Applications, 2019 (1)
- [22] Path dependence of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} integral for rapid dynamic fracture International Journal of Fracture, 2021, 231 (1) : 109 - 125
- [23] Nonlinear second-order q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-difference equations with three-point boundary conditions Computational and Applied Mathematics, 2014, 33 (2) : 385 - 397
- [24] M- and Mint\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_{\text {int}}$$\end{document}-integrals for cracks normal to the interface of anisotropic bimaterials International Journal of Fracture, 2016, 197 (1) : 49 - 61
- [25] Integral γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-Sliding Mode Control for a Quadrotor with Uncertain Time-Varying Mass and External Disturbance Journal of Electrical Engineering & Technology, 2022, 17 (1) : 707 - 716
- [26] A new basis for the application of the J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document}-integral for cyclically loaded cracks in elastic–plastic materials International Journal of Fracture, 2014, 189 (1) : 77 - 101
- [27] Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q^{b}$\end{document}-derivatives Advances in Difference Equations, 2021 (1)
- [28] Concavity Property of Minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Integrals with Lebesgue Measurable Gain IV: Product of Open Riemann Surfaces Peking Mathematical Journal, 2024, 7 (1) : 91 - 154
- [29] Fracture characterization of high-density polyethylene pipe materials using the J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document}-integral and the essential work of fracture International Journal of Fracture, 2013, 183 (2) : 119 - 133
- [30] On some new trapezoidal inequalities for qϰ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{\varkappa _{2}}$$\end{document}-quantum integrals via Green function The Journal of Analysis, 2022, 30 (1) : 15 - 33