Physico-chemical Investigation of Mixed Micelle Formation Between Tetradecyltrimethylammonium Bromide and Dodecyltrimethylammonium Chloride in Water and Aqueous Solutions of Sodium Chloride

被引:0
作者
Md. Anamul Hoque
Mohammad-Omar-Faruk Patoary
Md. Mamunur Rashid
Mohammad Robel Molla
Malik Abdul Rub
机构
[1] Jahangirnagar University,Department of Chemistry
[2] King Abdulaziz University,Chemistry Department, Faculty of Science
[3] King Abdulaziz University,Center of Excellence for Advanced Materials Research
来源
Journal of Solution Chemistry | 2017年 / 46卷
关键词
Tetradecyltrimethylammonium bromide (TTAB); Dodecyltrimethylammonium chloride (DTAC); Mixed micelle; Synergism; Hydrophobic interactions;
D O I
暂无
中图分类号
学科分类号
摘要
Conductometric measurements have been employed to gain a detailed insight into the interactions between two cationic surfactants, tetradecyltrimethylammonium bromide (TTAB) and dodecyltrimethylammonium chloride (DTAC), in water and in an aqueous solution of sodium chloride. The experimental data were analyzed according to Rubingh’s model within the framework of the pseudophase separation model. The evaluated values of critical micelle concentration (cmc) were found to be lower than their corresponding cmcid values, signifying attractive interactions involving both components in the solutions. The micellar mole fractions (X1Rub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ X_{1}^{\text{Rub}} $$\end{document}) of TTAB evaluated by Rubingh’s model were always larger than the ideal values (X1id\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ X_{1}^{\text{id}} $$\end{document}), signifying the higher involvement of TTAB in mixed micelles of TTAB and DTAC. Activity coefficients (f1Rub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{ 1}^{\text{Rub}} $$\end{document} and f2Rub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f_{ 2}^{\text{Rub}} $$\end{document}) were always below one in all cases signifying synergism in the mixed micelles. All the outcomes point to synergism and attractive interactions in the mixed systems. Values of excess Gibbs energy were evaluated by employing Rubingh’s model (ΔGexRub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta G_{\text{ex}}^{\text{Rub}} $$\end{document}) and the ΔGexRub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta G_{\text{ex}}^{\text{Rub}} $$\end{document} values obtained are negative. The values of ΔHmo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta H_{\text{m}}^{\text{o}} $$\end{document} and ΔSmo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta S_{\text{m}}^{\text{o}} $$\end{document} reveal that hydrophobic interaction is expected to be the binding force between TTAB and DTAC in aqueous media at lower temperatures, while both hydrophobic interactions as well as exothermic interactions are involved at higher temperatures. The interaction forces between the surfactants were found to be enhanced in the presence of NaCl.
引用
收藏
页码:682 / 703
页数:21
相关论文
共 191 条
  • [1] Luck W(1958)Symposium on “Recent advances in the colouring of man-made fibres” the mode of action of non-ionic levelling agents J. Soc. Dyers Colour. 74 221-235
  • [2] Kumar D(2016)Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures J. Phys. Org. Chem. 29 394-405
  • [3] Rub MA(2013)Effect of polymers and temperature on critical micelle concentration of some gemini and monomeric surfactants J. Chem. Thermodyn. 62 178-185
  • [4] Kumar B(2016)Interaction of cationic amphiphilic drug nortriptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles J. Mol. Liq. 218 595-603
  • [5] Tikariha D(2016)Effect of temperature and salts on the interaction of cetyltrimethylammonium bromide with ceftriaxone sodium trihydrate drug J. Mol. Liq. 223 716-724
  • [6] Ghosh KK(1998)Mixtures of nonionic and ionic surfactants: Determination of mixed micelle composition using cross-differentiation relations J. Phys. Chem. B 102 5886-5890
  • [7] Barbero N(2017)Interaction between antidepressant drug and anionic surfactant in low concentration range in aqueous/salt/urea solution: A conductometric and fluorometric study J. Mol. Liquids 227 1-14
  • [8] Quagliotto P(1982)Synergism in binary mixtures of surfactants. I. Theoretical analysis J. Colloid Interface Sci. 90 212-219
  • [9] Rub MA(1996)Properties of mixed micelles of binary surfactant combinations Langmuir 12 4084-4089
  • [10] Azum N(1993)Synergism in binary mixture of surfactants. 11. Mixtures containing mono- and disulfonated alkyl-and dialkyldiphenylethers J. Colloid Interface Sci. 157 254-259