k Block Sparse Vector Recovery via Block ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} Minimization

被引:0
作者
Shaohua Xie
Kaihao Liang
机构
[1] Sun Yat-Sen University,School of Mathematics
[2] Zhongkai University of Agriculture and Engineering,Department of Mathematics
关键词
Compressed sensing; block sparse vector; Block ; minimization; DCA algorithm; ADMM algorithm;
D O I
10.1007/s00034-022-02244-8
中图分类号
学科分类号
摘要
In this paper, k block sparse vectors are studied, and the block ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} model is adopted. It is proved theoretically that when the block sparsity satisfies some conditions, the k block sparse vector can be accurately recovered by the noise free block ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} model, and it can also be stably recovered by the noisy block ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} model. In the algorithm, we use the convex difference algorithm, and prove that the aggregation points of the sequence generated by the algorithm converge to the stable point of the objective function. We prove that when the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is less than a certain number λk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _k$$\end{document}, the aggregation points of the sequence generated by the algorithm are block sparse. Finally, we conduct data experiments. The experiments show that when the vector is block sparse, the block ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} model can recover the unknown vector better than the traditional ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1-\ell _2$$\end{document} model.
引用
收藏
页码:2897 / 2915
页数:18
相关论文
共 60 条
[1]  
Bi N(2022)A necessary and sufficient condition for sparse vector recovery via Appl. Comput. Harmon. Anal. 56 337-350
[2]  
Tang W(2021) minimization Anal. Appl. 19 1019-1031
[3]  
Bi N(2014)A new sufficient condition for sparse vector recovery via Math. Program. 149 301-327
[4]  
Tan J(2010) local minimization Found.Trends Mach. Learn. 3 1-122
[5]  
Tang W(2009)Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization New bounds for restricted isometry constants 56 4388-4394
[6]  
Bian W(2010)Distributed optimization and statistical learning via the alternating direction method of multipliers IEEE Trans. Signal Process. 58 1300-1308
[7]  
Chen X(2009)Shifting inequality and recovery of sparse signals IEEE Trans. Inf. Theory 55 3388-3397
[8]  
Ye Y(2011)On recovery of sparse signals via l1 minimization Appl. Comput. Harm. Anal. 31 59-73
[9]  
Boyd S(2010)Compressed sensing with coherent and redundant dictionaries SIAM J. Sci. Comput. 32 2832-2852
[10]  
Parikh N(2006)Lower bound theory of nonzero entries in solutions of l2-lp minimization IEEE Trans. Inf. Theory 52 6-18