On the Monotonicity of the Speed of Random Walks on a Percolation Cluster of Trees

被引:0
作者
Dayue Chen
Fuxi Zhang
机构
[1] Peking University,LMAM, School of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
random walk; percolation; speed; monotonicity; tree; 60K37; 60J10;
D O I
暂无
中图分类号
学科分类号
摘要
The authors consider the simple random walk on the in.nite cluster of the Bernoulli bond percolation of trees, and investigate the relation between the speed of the simple random walk and the retaining probability p by studying three classes of trees. A sufficient condition is established for Galton–Watson trees.
引用
收藏
页码:1949 / 1954
页数:5
相关论文
共 50 条
  • [21] The Best Mixing Time for Random Walks on Trees
    Beveridge, Andrew
    Youngblood, Jeanmarie
    GRAPHS AND COMBINATORICS, 2016, 32 (06) : 2211 - 2239
  • [22] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [23] Random walks on Galton-Watson trees with random conductances
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1652 - 1671
  • [24] The Poisson boundary of lamplighter random walks on trees
    Karlsson, Anders
    Woess, Wolfgang
    GEOMETRIAE DEDICATA, 2007, 124 (01) : 95 - 107
  • [25] RANDOM WALKS ON INFINITE TREES
    Anandam, Victor
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (01): : 75 - 82
  • [26] Percolation on random recursive trees
    Baur, Erich
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (04) : 655 - 680
  • [27] Transience and Recurrence of Random Walks on Percolation Clusters in an Ultrametric Space
    Dawson, D. A.
    Gorostiza, L. G.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 494 - 526
  • [28] Transience and Recurrence of Random Walks on Percolation Clusters in an Ultrametric Space
    D. A. Dawson
    L. G. Gorostiza
    Journal of Theoretical Probability, 2018, 31 : 494 - 526
  • [29] Random walks on trees with finitely many cone types
    Nagnibeda, T
    Woess, W
    JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (02) : 383 - 422
  • [30] Random Walks on Trees with Finitely Many Cone Types
    Tatiana Nagnibeda
    Wolfgang Woess
    Journal of Theoretical Probability, 2002, 15 : 383 - 422