On the number of Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}_{2}{{\mathbb {Z}}}_{4}$$\end{document} and ZpZp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}_{p}{{\mathbb {Z}}}_{p^{2}}$$\end{document}-additive cyclic codes

被引:0
作者
Eda Yildiz
Taher Abualrub
Ismail Aydogdu
机构
[1] Yildiz Technical University,Department of Mathematics
[2] American University of Sharjah,Department of Mathematics and Statistics
关键词
-additive cyclic codes; -additive cyclic codes; counting; separable; non-separable codes; 94B05; 94B60;
D O I
10.1007/s00200-020-00474-4
中图分类号
学科分类号
摘要
In this paper, we give the exact number of Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}_{2}{{\mathbb {Z}}}_{4}$$\end{document}-additive cyclic codes of length n=r+s,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=r+s,$$\end{document} for any positive integer r and any positive odd integer s. We will provide a formula for the the number of separable Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}_{2}{{\mathbb {Z}}_{4}}}$$\end{document}-additive cyclic codes of length n and then a formula for the number of non-separable Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}} _{2}{{\mathbb {Z}}_{4}}}$$\end{document}-additive cyclic codes of length n. Then, we have generalized our approach to give the exact number of ZpZp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}_{p}{\mathbb { Z}_{p^{2}}}}$$\end{document}-additive cyclic codes of length n=r+s,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=r+s,$$\end{document} for any prime p,  any positive integer r and any positive integer s where gcdp,s=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd \left( p,s\right) =1.$$\end{document} Moreover, we will provide examples of the number of these codes with different lengths n=r+s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=r+s$$\end{document}.
引用
收藏
页码:81 / 97
页数:16
相关论文
共 32 条
[1]  
Abualrub T(2014)-additive cyclic codes IEEE Trans. Inf. Theory 60 1508-1514
[2]  
Siap I(2017)-cyclic and constacyclic codes IEEE Trans. Inf. Theory 63 4883-4893
[3]  
Aydin N(2010)-linear codes: generator matrices and duality Des. Codes Cryptogr. 54 167-179
[4]  
Aydogdu I(2016)-additive cyclic codes, generator polynomials and dual codes IEEE Trans. Inf. Theory 62 6348-6354
[5]  
Abualrub T(2018)On Adv. Math. Commun. 12 169-179
[6]  
Siap I(1998)-additive cyclic codes IEEE Trans. Inf. Theory 44 1543-1547
[7]  
Borges J(2015)-linear codes Contemp. Math. 634 137-147
[8]  
Fernández-Córdoba C(1999)Counting additive IEEE Trans. Inf. Theory 45 2522-2524
[9]  
Pujol J(1994) codes IEEE Trans. Inf. Theory 40 301-319
[10]  
Rif à J(2011)Gray isometries for finite chain rings Adv. Math. Commun. 5 425-433