Some results on the classes of almost (L) limited and weakly precompact operators

被引:0
|
作者
Farid Afkir
Aziz Elbour
机构
[1] Moulay Ismail University of Meknes,Department of Mathematics, Faculty of Sciences and Technologies
来源
关键词
Weakly precompact operator; Almost (; ) limited; Order weakly compact operator; -set; Almost ; -set; Order continuous norm; Primary 47B60; Secondary 47B65; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
In the first part of this paper, we present some investigations on the class of almost (L) limited operators. We show that an operator T:X→E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:X \rightarrow E$$\end{document}, from a Banach space X to a Banach lattice E, is almost (L) limited iff its adjoint carries disjoint almost L-sequences to norm null ones. In addition, we improve several results obtained by Oughajji et al. In its second part, we study the relationship between the class of weakly precompact operators and that of order weakly compact (resp. b-weakly compact) operators. Among other things, we show that for a Banach lattice E and a Banach space X the following statements are equivalent: Every order weakly compact (resp. b-weakly compact) operator T:E→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:E \rightarrow X$$\end{document} is weakly precompact;The norm of E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} is order continuous or X does not contain any isomorphic copy of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^ 1$$\end{document}.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条
  • [1] Some results on the classes of almost (L) limited and weakly precompact operators
    Afkir, Farid
    Elbour, Aziz
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (1-2): : 201 - 214
  • [2] Some results on the class of weakly sequentially precompact sets and operators
    Fatima Zahra Oughajji
    Kamal EL Fahri
    Mohammed Moussa
    Acta Scientiarum Mathematicarum, 2023, 89 : 533 - 543
  • [3] Some results on the class of weakly sequentially precompact sets and operators
    Oughajji, Fatima Zahra
    EL Fahri, Kamal
    Moussa, Mohammed
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4): : 533 - 543
  • [4] Some results on almost L-weakly and almost M-weakly compact operators
    Redouane Nouira
    Driss Lhaimer
    Aziz Elbour
    Positivity, 2022, 26
  • [5] Some results on almost L-weakly and almost M-weakly compact operators
    Nouira, Redouane
    Lhaimer, Driss
    Elbour, Aziz
    POSITIVITY, 2022, 26 (02)
  • [6] Some properties of almost L-weakly and almost M-weakly compact operators
    Elbour, Aziz
    Afkir, Farid
    Sabiri, Mohammed
    POSITIVITY, 2020, 24 (01) : 141 - 149
  • [7] Some properties of almost L-weakly and almost M-weakly compact operators
    Aziz Elbour
    Farid Afkir
    Mohammed Sabiri
    Positivity, 2020, 24 : 141 - 149
  • [8] On the weakly precompact and unconditionally converging operators
    Alimohammady, Mohsen
    Roohi, Mehdi
    GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 29 - 35
  • [9] ON UNCONDITIONALLY CONVERGING AND WEAKLY PRECOMPACT OPERATORS
    SAAB, E
    SAAB, P
    ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (03) : 522 - 531
  • [10] OPERATORS HAVING WEAKLY PRECOMPACT ADJOINTS
    BATOR, EM
    LEWIS, PW
    MATHEMATISCHE NACHRICHTEN, 1992, 157 : 99 - 103