Some results on the classes of almost (L) limited and weakly precompact operators

被引:0
作者
Farid Afkir
Aziz Elbour
机构
[1] Moulay Ismail University of Meknes,Department of Mathematics, Faculty of Sciences and Technologies
来源
Acta Scientiarum Mathematicarum | 2023年 / 89卷
关键词
Weakly precompact operator; Almost (; ) limited; Order weakly compact operator; -set; Almost ; -set; Order continuous norm; Primary 47B60; Secondary 47B65; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
In the first part of this paper, we present some investigations on the class of almost (L) limited operators. We show that an operator T:X→E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:X \rightarrow E$$\end{document}, from a Banach space X to a Banach lattice E, is almost (L) limited iff its adjoint carries disjoint almost L-sequences to norm null ones. In addition, we improve several results obtained by Oughajji et al. In its second part, we study the relationship between the class of weakly precompact operators and that of order weakly compact (resp. b-weakly compact) operators. Among other things, we show that for a Banach lattice E and a Banach space X the following statements are equivalent: Every order weakly compact (resp. b-weakly compact) operator T:E→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:E \rightarrow X$$\end{document} is weakly precompact;The norm of E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} is order continuous or X does not contain any isomorphic copy of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^ 1$$\end{document}.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 24 条
[1]  
Alpay S(2003)On property (b) of vector lattices Positivity 7 135-139
[2]  
Altin B(2005)Some properties of G. U. J. Sc. 18 391-395
[3]  
Tonyali C(2007)-weakly compact operators Taiwan. J. Math. 11 143-150
[4]  
Altin B(2013)On Quaest. Math. 36 107-118
[5]  
Altin B(2009)-weakly compact operators on Banach lattices Positivity 13 683-692
[6]  
Aqzzouz B(1992)(L) sets and almost (L) sets in Banach lattices Math. Nachr. 157 99-103
[7]  
Bouras K(1975)The duality problem for the class of Trans. Amer. Math. Soc. 214 389-402
[8]  
Aqzzouz B(1979)-weakly compact operators Isr. J. Math. 34 287-320
[9]  
Elbour A(2021)Operators having weakly precompact adjoints Rend. Circ. Mat. Palermo (2) 70 235-245
[10]  
H’michane J(2017)o-weakly compact mappings of Riesz spaces Acta Math. Hungar. 152 453-463