Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials

被引:0
|
作者
Goyal M. [1 ]
Agrawal P.N. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee
关键词
Bounded variation; Bézier operator; Modulus of continuity; Rate of convergence;
D O I
10.1007/s11565-017-0288-9
中图分类号
学科分类号
摘要
In this paper, we introduce the Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials. We establish some local results, a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness and also study the rate of convergence for the functions having a derivative of bounded variation for these operators. © 2017, Università degli Studi di Ferrara.
引用
收藏
页码:289 / 302
页数:13
相关论文
共 25 条
  • [1] Approximation for Jakimovski–Leviatan–Pǎltǎnea operators
    Verma D.K.
    Gupta V.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2015, 61 (2) : 367 - 380
  • [2] Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials
    M. Mursaleen
    A. A. H. AL-Abeid
    Khursheed J. Ansari
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1251 - 1265
  • [3] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [4] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [5] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [6] APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS
    Agrawal, P. N.
    Kumar, Ajay
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1522 - 1536
  • [7] Approximation using Jakimovski–Leviatan operators of Durrmeyer type with 2D-Appell polynomials
    Manoj Kumar
    Nusrat Raza
    M. Mursaleen
    Journal of Inequalities and Applications, 2025 (1)
  • [8] On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [9] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19
  • [10] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2021