Riemannian Geometry of Two Families of Tangent Lie Groups

被引:0
|
作者
F. Asgari
H. R. Salimi Moghaddam
机构
[1] University of Isfahan,Department of Mathematics, Faculty of Sciences
来源
Bulletin of the Iranian Mathematical Society | 2018年 / 44卷
关键词
Left invariant Riemannian metric; Tangent Lie group; Complete and vertical lifts; Sectional and Ricci curvatures; Primary 53B21; Secondary 22E60; 22E15;
D O I
暂无
中图分类号
学科分类号
摘要
Using vertical and complete lifts, any left invariant Riemannian metric on a Lie group induces a left invariant Riemannian metric on the tangent Lie group. In the present article, we study the Riemannian geometry of tangent bundle of two families of real Lie groups. The first one is the family of special Lie groups considered by J. Milnor and the second one is the class of Lie groups with one-dimensional commutator groups. The Levi–Civita connection, sectional and Ricci curvatures have been investigated.
引用
收藏
页码:193 / 203
页数:10
相关论文
共 20 条
  • [1] Riemannian Geometry of Two Families of Tangent Lie Groups
    Asgari, F.
    Moghaddam, H. R. Salimi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 193 - 203
  • [2] On the Riemannian geometry of tangent Lie groups
    Asgari F.
    Salimi Moghaddam H.R.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2): : 185 - 195
  • [3] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Ilka Agricola
    Ana Cristina Ferreira
    Advances in Applied Clifford Algebras, 2017, 27 : 895 - 911
  • [4] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Agricola, Ilka
    Ferreira, Ana Cristina
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 895 - 911
  • [5] Left Invariant Lifted (α, β)-metrics of Douglas Type on Tangent Lie Groups
    Nejadahm, Masumeh
    Moghaddam, Hamid Reza Salimi
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2021, 17 (02) : 201 - 215
  • [6] Left invariant Randers metrics of Berwald type on tangent Lie groups
    Asgari, Farhad
    Moghaddam, Hamid Reza Salimi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (01)
  • [7] T-FLATNESS AND BOCHNER FLATNESS OF THE TANGENT BUNDLES OF LIE GROUPS
    Altunbas, Murat
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (02): : 206 - 213
  • [8] ON THE GEOMETRY OF SOME PARA-HYPERCOMPLEX LIE GROUPS
    Moghaddam, H. R. Salimi
    ARCHIVUM MATHEMATICUM, 2009, 45 (03): : 159 - 170
  • [9] Statistical structures on tangent bundles and Lie groupps
    Peyghan, Esmaeil
    Seifipour, Davood
    Gezer, Aydin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (04): : 1140 - 1154
  • [10] Three-Dimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semisymmetric Metric Connection
    Klepikov, P. N.
    Rodionov, E. D.
    Khromova, O. P.
    RUSSIAN MATHEMATICS, 2022, 66 (05) : 65 - 69