Radiating gravitational collapse with shear viscosity revisited

被引:0
作者
G. Pinheiro
R. Chan
机构
[1] Observatório Nacional,
[2] Coordenação de Astronomia e Astrofísica,undefined
来源
General Relativity and Gravitation | 2008年 / 40卷
关键词
Gravitational collapse; Shear viscosity; Black hole;
D O I
暂无
中图分类号
学科分类号
摘要
A new model is proposed to a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. In a previous paper we have introduced a function time dependent into the grr, besides the time dependent metric functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g_{\theta\theta}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g_{\phi\phi}}$$\end{document}. The aim of this work is to generalize this previous model by introducing shear viscosity and compare it to the non-viscous collapse. The behavior of the density, pressure, mass, luminosity and the effective adiabatic index is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{\odot}}$$\end{document}. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the shear the pressure becomes more and more anisotropic. The black hole is never formed because the apparent horizon formation condition is never satisfied. An observer at infinity sees a radial point source radiating exponentially until reaches the time of maximum luminosity and suddenly the star turns off. The effective adiabatic index has a very unusual behavior because we have a non-adiabatic regime in the fluid due to the heat flow.
引用
收藏
页码:2149 / 2175
页数:26
相关论文
共 50 条
  • [21] Energy Estimates and Gravitational Collapse
    Pin Yu
    Communications in Mathematical Physics, 2013, 317 : 273 - 316
  • [22] Energy Estimates and Gravitational Collapse
    Yu, Pin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (02) : 273 - 316
  • [23] Gravitational collapse of Vaidya spacetime
    Vertogradov, Vitalii
    PROCEEDINGS OF THE 9TH ALEXANDER FRIEDMANN INTERNATIONAL SEMINAR ON GRAVITATION AND COSMOLOGY AND 3RD SATELLITE SYMPOSIUM ON THE CASIMIR EFFECT, 2016, 41
  • [24] Shear-free radiating collapse model via Karmarkar condition in f(R) gravity
    Abbas, G.
    Nazar, H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (03)
  • [25] Gravitational Collapse in Quantum Einstein Gravity
    Bonanno, Alfio
    Koch, Benjamin
    Platania, Alessia
    FOUNDATIONS OF PHYSICS, 2018, 48 (10) : 1393 - 1406
  • [26] Gravitational Collapse and the Vlasov–Poisson System
    Gerhard Rein
    Lukas Taegert
    Annales Henri Poincaré, 2016, 17 : 1415 - 1427
  • [27] Radiating collapse in the presence of anisotropic stresses
    Govender, M.
    Bogadi, R. S.
    Lortan, D. B.
    Maharaj, S. D.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (03):
  • [28] Radiating spherical collapse with heat flow
    Govender, M
    Govinder, KS
    Maharaj, SD
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2003, 12 (04): : 667 - 676
  • [29] Gravitational collapse in gravity's rainbow
    Ali, Ahmed Farag
    Faizal, Mir
    Majumder, Barun
    Mistry, Ravi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (09)
  • [30] Gravitational collapse in spatially isotropic coordinates
    Govender, Megandhren
    Bogadi, Robert
    Sharma, Ranjan
    Das, Shyam
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (01) : 1 - 7