Dynamical Classification of a Family of Birational Maps of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^2$$\end{document} via Algebraic Entropy

被引:0
作者
Sundus Zafar
Anna Cima
机构
[1] Universitat Autonoma de Barcelona,
关键词
Birational maps; Algebraic entropy; First integrals; Fibrations; Blowing-up; Integrability; Periodicity; Chaos; 14E05; 26C15; 34K19; 28D20; 37C15; 39A23; 39A45;
D O I
10.1007/s12346-018-0304-1
中图分类号
学科分类号
摘要
This work dynamically classifies a 9-parametric family of birational maps f:C2→C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: {\mathbb {C}}^2 \rightarrow {\mathbb {C}}^2$$\end{document}. From the sequence of the degrees dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_n$$\end{document} of the iterates of f,  we find the dynamical degree δ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (f)$$\end{document} of f. We identify when dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_n$$\end{document} grows periodically, linearly, quadratically or exponentially. The considered family includes the birational maps studied by Bedford and Kim (Mich Math J 54:647–670, 2006) as one of its subfamilies.
引用
收藏
页码:631 / 652
页数:21
相关论文
共 38 条
[1]  
Angles JC(2006)On the complexity of some birational transformations J. Phys. A Math. Gen. 39 36413654-596
[2]  
Maillard JM(2004)On the degree growth of birational mappings in higher dimension J. Geom. Anal. 14 567-670
[3]  
Viallet C(2006)Periodicities in linear fractional recurrences: degree growth of birational surface maps Mich. Math. J. 54 647-437
[4]  
Bedford E(1999)Algebraic entropy Comm. Math. Phys. 204 425-34
[5]  
Kim K(2014)Integrability and algebraic entropy of k-periodic non-autonomous Lyness recurrences J. Math. Anal. Appl. 413 20-645
[6]  
Bedford E(2006)Dynamics of some rational discrete dynamical systems via invariants J. Bifurc. Chaos 16 631-864
[7]  
Kim K(2012)On 2- and 3-periodic Lyness difference equations J. Differ. Equ. Appl. 18 849-772
[8]  
Bellon MP(2012)Non-autonomous 2-periodic Gumovski–Mira difference equations Int. J. Bifurc. Chaos Appl. Sci. Eng. 22 1250264-1169
[9]  
Viallet CM(2005)On the dynamics of Commun. Appl. Nonlinear Anal. 12 3540-576
[10]  
Cima A(1996)Dynamics of birational maps of Indiana Univ. Math. J. 45 721-1099