Computational analysis of the thermal conductivity of the carbon–carbon composite materials

被引:0
|
作者
M. Grujicic
C. L. Zhao
E. C. Dusel
D. R. Morgan
R. S. Miller
D. E. Beasley
机构
[1] Clemson University,Program in Materials Science and Engineering, Department of Mechanical Engineering
[2] Touchstone Research Laboratory,undefined
[3] Inc.,undefined
来源
Journal of Materials Science | 2006年 / 41卷
关键词
Thermal Conductivity; Carbon Fiber; Effective Thermal Conductivity; Carbon Composite; Thermal Protection System;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental data for carbon–carbon constituent materials are combined with a three-dimensional stationary heat-transfer finite element analysis to compute the average transverse and longitudinal thermal conductivities in carbon–carbon composites. Particular attention is given in elucidating the roles of various micro-structural defects such as de-bonded fiber/matrix interfaces, cracks and voids on thermal conductivity in these materials. In addition, the effect of the fiber precursor material is explored by analyzing PAN-based and pitch-based carbon fibers, both in the same type pitch-based carbon matrix. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibers and (b) a macro scale comparable with the thickness of carbon–carbon composite structures used in the thermal protection systems for space vehicles. The results obtain at room temperature are quite consistent with their experimental counterparts. At high temperatures, the model predicts that the contributions of gas-phase conduction and radiation within the micro-structural defects can significantly increase the transverse thermal conductivity of the carbon–carbon composites.
引用
收藏
页码:8244 / 8256
页数:12
相关论文
共 50 条
  • [1] Computational analysis of the thermal conductivity of the carbon-carbon composite materials
    Grujicic, M.
    Zhao, C. L.
    Dusel, E. C.
    Morgan, D. R.
    Miller, R. S.
    Beasley, D. E.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (24) : 8244 - 8256
  • [2] Thermal Conductivity of New Carbon Polymer Composite Materials
    Popov I.A.
    Gortyshov Y.F.
    Russian Aeronautics, 2023, 66 (03): : 581 - 585
  • [3] Effect of the Carbon Nanotube Distribution on the Thermal Conductivity of Composite Materials
    Afrooz, Iman Eslami
    Oechsner, Andreas
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2015, 137 (03):
  • [4] Thermal Conductivity of Carbon Nanotube Array Laminated Composite Materials
    Abot, Jandro L.
    Bardin, Gregory
    Spriegel, Courtney
    Song, Yi
    Raghavan, Vasudevan
    Govindaraju, Nirmal
    JOURNAL OF COMPOSITE MATERIALS, 2011, 45 (03) : 321 - 340
  • [5] Research status of thermal conductivity in copper-carbon composite materials
    Chang, Hong-xu
    Bai, Liang
    Sun, Li-wei
    Wang, Dan-yang
    Liu, Jing-shun
    Li, Ze
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2024,
  • [6] THERMAL CONDUCTIVITY AND SPECIFIC HEAT OF CARBON-PLASTIC POLYMER COMPOSITE MATERIALS
    Popov, I. A.
    Konstantinov, D. Yu.
    Zhukova, Yu. V.
    Chorny, A. D.
    HIGH TEMPERATURE MATERIAL PROCESSES, 2022, 26 (04): : 25 - 38
  • [7] THERMAL CONDUCTIVITY OF CARBON-BASED MATERIALS
    Kutuzov, S. V.
    Vasil'chenko, G. N.
    Chirka, T. V.
    Panov, E. N.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2013, 54 (01) : 39 - 43
  • [8] Thermal conductivity of carbon-based materials
    Kutuzov S.V.
    Vasil'Chenko G.N.
    Chirka T.V.
    Panov E.N.
    Refractories and Industrial Ceramics, 2013, 54 (1) : 39 - 43
  • [9] Formation of Carbon-Carbon Composite Material Thermal Conductivity Standards
    S. A. Kolesnikov
    M. Yu. Bamborin
    V. A. Vorontsov
    A. K. Protsenko
    E. G. Cheblakova
    Refractories and Industrial Ceramics, 2017, 58 : 94 - 102
  • [10] Formation of Carbon-Carbon Composite Material Thermal Conductivity Standards
    Kolesnikov, S. A.
    Bamborin, M. Yu.
    Vorontsov, V. A.
    Protsenko, A. K.
    Cheblakova, E. G.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2017, 58 (01) : 94 - 102