Ergodic properties of infinite extensions of area-preserving flows

被引:0
作者
Krzysztof Frączek
Corinna Ulcigrai
机构
[1] Nicolaus Copernicus University,Faculty of Mathematics and Computer Science
[2] University of Bristol,School of Mathematics
[3] University Walk,undefined
来源
Mathematische Annalen | 2012年 / 354卷
关键词
37A10; 37A40; 37C40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider volume-preserving flows \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Phi^f_t)_{t\in\mathbb{R}}}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \times \mathbb{R}}$$\end{document} , where S is a compact connected surface of genus g ≥ 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Phi^f_t)_{t\in\mathbb{R}}}$$\end{document} has the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi^f_t(x, y) = (\phi_{t}x, y + \int_0^{t}f(\phi_{s}x)\,ds)}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\phi_t)_{t\in\mathbb{R}}}$$\end{document} is a locally Hamiltonian flow of hyperbolic periodic type on S and f is a smooth real valued function on S. We investigate ergodic properties of these infinite measure-preserving flows and prove that if f belongs to a space of finite codimension in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{C}^{2+\epsilon}(S)}$$\end{document} , then the following dynamical dichotomy holds: if there is a fixed point of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\phi_t)_{t\in\mathbb{R}}}$$\end{document} on which f does not vanish, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Phi^f_t)_{t\in\mathbb{R}}}$$\end{document} is ergodic, otherwise, if f vanishes on all fixed points, it is reducible, i.e. isomorphic to the trivial extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Phi^0_t)_{t\in\mathbb{R}}}$$\end{document} . The proof of this result exploits the reduction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Phi^f_t)_{t\in\mathbb{R}}}$$\end{document} to a skew product automorphism over an interval exchange transformation of periodic type. If there is a fixed point of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\phi_t)_{t\in\mathbb{R}}}$$\end{document} on which f does not vanish, the reduction yields cocycles with symmetric logarithmic singularities, for which we prove ergodicity.
引用
收藏
页码:1289 / 1367
页数:78
相关论文
empty
未找到相关数据