No More Than 2d+1-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{d+1}-2$$\end{document} Nearly Neighbourly Simplices in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document}

被引:0
作者
Andrzej P. Kisielewicz
Krzysztof Przesławski
机构
[1] Uniwersytet Zielonogórski,Wydział Matematyki, Informatyki i Ekonometrii
关键词
Nearly neighbourly simplices; Fourier transform; Boolean functions; Primary 52C17; Secondary 52B11;
D O I
10.1007/s00454-019-00170-2
中图分类号
学科分类号
摘要
We prove a combinatorial theorem on families of disjoint sub-boxes of a discrete cube, which implies that there are at most 2d+1-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{d+1}-2$$\end{document} nearly neighbourly simplices in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}.
引用
收藏
页码:659 / 665
页数:6
相关论文
共 6 条
  • [1] Bagemihl F(1956)A conjecture concerning neighboring tetrahedr Am. Math. Mon. 63 328-329
  • [2] Furino S(1988)Nearly-neighborly tetrahedra and the decomposition of some multigraphs J. Comb. Theory Ser. A 48 147-155
  • [3] Gamble B(1982)On the decomposition of J. Graph Theory 6 493-494
  • [4] Zaks J(1981) into complete bipartite graphs Geom. Dedicata 11 505-507
  • [5] Tverberg H(undefined)Neighborly families of undefined undefined undefined-undefined
  • [6] Zaks J(undefined)-simplices in undefined undefined undefined-undefined