Local Geometry of Levi-Forms Associated with the Existence of Complex Submanifolds and the Minimality of Generic CR Manifolds

被引:0
作者
Heungju Ahn
Chong-Kyu Han
机构
[1] POSTECH,Department of Mathematics
[2] Seoul National University,Department of Mathematical Sciences
来源
Journal of Geometric Analysis | 2012年 / 22卷
关键词
CR manifold; Complex submanifold; Reduced manifold; CR extension; CR function; Propagation of holomorphic extendibility; 32D15; 58A10;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a generic CR manifold in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbb{C}^{m+d}$\end{document} of codimension d, locally given as the common zero set of real-valued functions r1,…,rd. Given an integer δ=1,…,d, we find a necessary and sufficient condition for M to contain a real submanifold of codimension δ with the same CR structure. We also find a necessary and sufficient condition and several sufficient conditions for M to admit a complex submanifold of complex dimension n, for any n=1,…,m. We use the method of prolongation of an exterior differential system. The conditions are systems of partial differential equations on r1,…,rd of third order.
引用
收藏
页码:561 / 582
页数:21
相关论文
共 23 条
[1]  
Aĭrapetjan R.A.(1981)Analytic continuation of CR-functions across the “edge of the wedge” Dokl. Akad. Nauk SSSR 259 777-781
[2]  
Henkin G.M.(1990)Cauchy-Riemann functions on manifolds of higher codimension in complex space Invent. Math. 101 45-56
[3]  
Baouendi M.S.(1943)Analytic and meromorphic continuation by means of Green’s formula Ann. Math. (2) 44 652-673
[4]  
Rothschild L.P.(1982)Holomorphic extension of CR functions Duke Math. J. 49 757-784
[5]  
Bochner S.(1974)Real hypersurfaces in complex manifolds Acta Math. 133 219-271
[6]  
Boggess A.(2009)Generalization of the Frobenius theorem on involutivity J. Korean Math. Soc. 46 1087-1103
[7]  
Polking J.C.(2009)Foliations associated with Pfaffian systems Bull. Korean Math. Soc. 46 931-940
[8]  
Chern S.S.(2010)Integrable submanifolds in almost complex manifolds J. Geom. Anal. 20 177-192
[9]  
Moser J.K.(2010)Complex hypersurfaces in real hypersurfaces J. Korean Math. Soc. 47 1001-1015
[10]  
Han C.K.(1983)Propagation of holomorphic extendability of CR functions Math. Ann. 263 157-177