共 2 条
Tilings of the plane and Thurston semi-norm
被引:0
|作者:
Jean-René Chazottes
Jean-Marc Gambaudo
François Gautero
机构:
[1] CNRS-École Polytechnique,Centre de Physique Théorique
[2] Université Nice Sophia Antipolis-CNRS,INLN
[3] Université Nice Sophia Antipolis-CNRS,Laboratoire J.A. Dieudonné
来源:
Geometriae Dedicata
|
2014年
/
173卷
关键词:
Euclidean tilings;
Branched surfaces;
Translation surfaces;
52C20;
57M12;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that the problem of tiling the Euclidean plane with a finite set of polygons (up to translation) boils down to prove the existence of zeros of a non-negative convex function defined on a finite-dimensional simplex. This function is a generalisation, in the framework of branched surfaces, of the Thurston semi-norm originally defined for compact 3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3$$\end{document}-manifolds.
引用
收藏
页码:129 / 142
页数:13
相关论文