Existence and Asymptotic Behavior of Positive Solutions for a Coupled Fractional Differential System

被引:0
|
作者
Sonia Ben Makhlouf
Majda Chaieb
Zagharide Zine El Abidine
机构
[1] Faculté des Sciences de Tunis,Université de Tunis El Manar
来源
Differential Equations and Dynamical Systems | 2020年 / 28卷
关键词
Riemann–Liouville fractional derivative; Green function; Asymptotic behavior; Karamata function; Schäuder’s fixed point theorem; 26A33; 34A08; 34B27; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we take up the existence and the asymptotic behavior of positive and continuous solutions to the following coupled fractional differential system Dαu=a(x)upvrin(0,1),Dβv=b(x)usvqin(0,1),u(0)=u(1)=Dα-3u(0)=u′(1)=0,v(0)=v(1)=Dβ-3v(0)=v′(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle D^{\alpha } u=a(x)\displaystyle u^{p }\displaystyle v^{r}\quad \text { in }(0,1) , \\ \displaystyle D^{\beta } v=b(x)\displaystyle u^{s }\displaystyle v^{q}\quad \text { in }(0,1) , \\ u(0)= u(1)= D^{\alpha -3}u(0)= u^{\prime }(1)=0,\\ v(0)= v(1)= D^{\beta -3}v(0)= v^{\prime }(1)=0, \end{array} \right. \end{aligned}$$\end{document}where α,β∈(3,4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha , \beta \in (3,4]$$\end{document}, p,q∈(-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p, q\in (-1,1)$$\end{document}, r,s∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r, s\in \mathbb {R}$$\end{document} such that (1-|p|)(1-|q|)-|rs|>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-|p|)(1-|q|)-|rs|> 0$$\end{document}, D is the standard Riemann–Liouville differentiation and a, b are nonnegative and continuous functions in (0, 1) allowed to be singular at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0$$\end{document} and x=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=1$$\end{document} and they are required to satisfy some appropriate conditions related to Karamata regular variation theory.
引用
收藏
页码:953 / 998
页数:45
相关论文
共 50 条
  • [1] Existence and Asymptotic Behavior of Positive Solutions for a Coupled Fractional Differential System
    Ben Makhlouf, Sonia
    Chaieb, Majda
    Zine El Abidine, Zagharide
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (04) : 953 - 998
  • [2] Existence and Asymptotic Behavior of Positive Solutions for a Coupled System of Semilinear Fractional Differential Equations
    Hassan Yahya Alfifi
    Imen Ben Saad
    Sameh Turki
    Zagharide Zine El Abidine
    Results in Mathematics, 2017, 71 : 705 - 730
  • [3] Existence and Asymptotic Behavior of Positive Solutions for a Coupled System of Semilinear Fractional Differential Equations
    Alfifi, Hassan Yahya
    Ben Saad, Imen
    Turki, Sameh
    El Abidine, Zagharide Zine
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 705 - 730
  • [4] On Existence and Asymptotic Behavior of Positive Solutions for a Fractional Order Differential System Involving Riemann-Liouville Derivatives
    Turki, Sameh
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2025, 33 (02) : 419 - 452
  • [5] Existence and asymptotic behavior of positive ground state solutions for coupled nonlinear fractional Kirchhoff-type systems
    Che, Guofeng
    Chen, Haibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (01) : 173 - 188
  • [6] A nonlocal coupled system involving N-Laplacian operator: existence and asymptotic behavior of positive solutions
    Guefaifia, Rafik
    Bellamouchi, Chahinez
    Boulaaras, Salah
    Jan, Rashid
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [7] Existence and Asymptotic Behavior of Positive Solutions for Variable Exponent Elliptic System
    Yin, Honghui
    Yang, Zuodong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (01) : 19 - 36
  • [8] EXISTENCE AND ASYMPTOTIC BEHAVIOR OF POSITIVE LEAST ENERGY SOLUTIONS FOR COUPLED NONLINEAR CHOQUARD EQUATIONS
    You, Song
    Zhao, Peihao
    Wang, Qingxuan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [9] Existence and global asymptotic behavior of positive solutions for sublinear and superlinear fractional boundary value problems
    Imed Bachar
    Habib Mâagli
    Faten Toumi
    Zagharide Zine El Abidine
    Chinese Annals of Mathematics, Series B, 2016, 37 : 1 - 28
  • [10] EXISTENCE AND ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF A SEMILINEAR ELLIPTIC SYSTEM IN A BOUNDED DOMAIN
    Chaieb, Majda
    Dhifli, Abdelwaheb
    Zermani, Samia
    OPUSCULA MATHEMATICA, 2016, 36 (03) : 315 - 336