Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach

被引:0
|
作者
Masoud Arabfard
Mina Ohadi
Vahid Rezaei Tabar
Ahmad Delbari
Kaveh Kavousi
机构
[1] Kish International Campus University of Tehran,Department of Bioinformatics
[2] University of Tehran,Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB)
[3] University of Social Welfare and Rehabilitation Sciences,Iranian Research Center on Aging
[4] Allameh Tabataba’i University,Department of Statistics, Faculty of Mathematical Sciences and Computer
来源
BMC Genomics | / 20卷
关键词
Genome-wide; Prioritization; Human aging genes; Positive unlabeled learning; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach
    Arabfard, Masoud
    Ohadi, Mina
    Tabar, Vahid Rezaei
    Delbari, Ahmad
    Kavousi, Kaveh
    BMC GENOMICS, 2019, 20 (01)
  • [2] A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data
    Costa, Pedro R.
    Acencio, Marcio L.
    Lemke, Ney
    BMC GENOMICS, 2010, 11
  • [3] Machine Learning to Advance Human Genome-Wide Association Studies
    Sigala, Rafaella E.
    Lagou, Vasiliki
    Shmeliov, Aleksey
    Atito, Sara
    Kouchaki, Samaneh
    Awais, Muhammad
    Prokopenko, Inga
    Mahdi, Adam
    Demirkan, Ayse
    GENES, 2024, 15 (01)
  • [4] Prediction of Probable Major Depressive Disorder in the Taiwan Biobank: An Integrated Machine Learning and Genome-Wide Analysis Approach
    Lin, Eugene
    Kuo, Po-Hsiu
    Lin, Wan-Yu
    Liu, Yu-Li
    Yang, Albert C.
    Tsai, Shih-Jen
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (07):
  • [5] Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
    Gonzalez-Recio, Oscar
    Rosa, Guilherme J. M.
    Gianola, Daniel
    LIVESTOCK SCIENCE, 2014, 166 : 217 - 231
  • [6] Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction
    Majek, Peter
    Lueftinger, Lukas
    Beisken, Stephan
    Rattei, Thomas
    Materna, Arne
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [7] Editorial: Machine Learning in Genome-Wide Association Studies
    Hu, Ting
    Darabos, Christian
    Urbanowicz, Ryan
    FRONTIERS IN GENETICS, 2020, 11
  • [8] Machine learning approaches to genome-wide association studies
    Enoma, David O.
    Bishung, Janet
    Abiodun, Theresa
    Ogunlana, Olubanke
    Osamor, Victor Chukwudi
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (04)
  • [9] Leveraging machine learning to advance genome-wide association studies
    Dagasso, Gabrielle
    Yan, Yan
    Wang, Lipu
    Li, Longhai
    Kutcher, Randy
    Zhang, Wentao
    Jin, Lingling
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2021, 25 (1-2) : 17 - 36
  • [10] Genome-Wide Analysis of MDR and XDR Tuberculosis from Belarus: Machine-Learning Approach
    Sergeev, Roman Sergeevich
    Kavaliou, Ivan S.
    Sataneuski, Uladzislau V.
    Gabrielian, Andrei
    Rosenthal, Alex
    Tartakovsky, Michael
    Tuzikov, Alexander V.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (04) : 1398 - 1408