Uniform Regularity and Vanishing Dissipation Limit for the Full Compressible Navier–Stokes System in Three Dimensional Bounded Domain

被引:1
作者
Yong Wang
机构
[1] AMSS,Institute of Applied Mathematics
[2] CAS,undefined
来源
Archive for Rational Mechanics and Analysis | 2016年 / 221卷
关键词
Uniform Estimate; Thermal Boundary Layer; Stokes System; Pointwise Estimate; Viscous Boundary Layer;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we study the uniform regularity and vanishing dissipation limit for the full compressible Navier–Stokes system whose viscosity and heat conductivity are allowed to vanish at different orders. The problem is studied in a three dimensional bounded domain with Navier-slip type boundary conditions. It is shown that there exists a unique strong solution to the full compressible Navier–Stokes system with the boundary conditions in a finite time interval which is independent of the viscosity and heat conductivity. The solution is uniformly bounded in W1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W^{1,\infty}}$$\end{document} and is a conormal Sobolev space. Based on such uniform estimates, we prove the convergence of the solutions of the full compressible Navier–Stokes to the corresponding solutions of the full compressible Euler system in L∞(0,T;L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^\infty(0,T; L^2)}$$\end{document}, L∞(0,T;H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^\infty(0,T; H^{1})}$$\end{document} and L∞([0,T]×Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^\infty([0,T]\times\Omega)}$$\end{document} with a rate of convergence.
引用
收藏
页码:1345 / 1415
页数:70
相关论文
共 37 条
  • [21] Paddick M.(1999)On the inviscid limit of the 3D Navier–Stokes equations with generalized Navier-slip boundary conditions Commun. Pure Appl. Math. 52 479-541
  • [22] Sammartino M.(undefined)On 3D Lagrangian Navier–Stokes undefined undefined undefined-undefined
  • [23] Caflisch R.E.(undefined) -model with a class of vorticity-slip boundary conditions undefined undefined undefined-undefined
  • [24] Sammartino M.(undefined)Zero-viscosity limit of the linearized Navier–Stokes equations for a compressible viscous fluid in the half-plane undefined undefined undefined-undefined
  • [25] Caflisch R.E.(undefined)undefined undefined undefined undefined-undefined
  • [26] Simon J.(undefined)undefined undefined undefined undefined-undefined
  • [27] Wang Y.G.(undefined)undefined undefined undefined undefined-undefined
  • [28] Williams M.(undefined)undefined undefined undefined undefined-undefined
  • [29] Wang Y.(undefined)undefined undefined undefined undefined-undefined
  • [30] Xin Z.P.(undefined)undefined undefined undefined undefined-undefined