Uniform Regularity and Vanishing Dissipation Limit for the Full Compressible Navier–Stokes System in Three Dimensional Bounded Domain

被引:1
作者
Yong Wang
机构
[1] AMSS,Institute of Applied Mathematics
[2] CAS,undefined
来源
Archive for Rational Mechanics and Analysis | 2016年 / 221卷
关键词
Uniform Estimate; Thermal Boundary Layer; Stokes System; Pointwise Estimate; Viscous Boundary Layer;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we study the uniform regularity and vanishing dissipation limit for the full compressible Navier–Stokes system whose viscosity and heat conductivity are allowed to vanish at different orders. The problem is studied in a three dimensional bounded domain with Navier-slip type boundary conditions. It is shown that there exists a unique strong solution to the full compressible Navier–Stokes system with the boundary conditions in a finite time interval which is independent of the viscosity and heat conductivity. The solution is uniformly bounded in W1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W^{1,\infty}}$$\end{document} and is a conormal Sobolev space. Based on such uniform estimates, we prove the convergence of the solutions of the full compressible Navier–Stokes to the corresponding solutions of the full compressible Euler system in L∞(0,T;L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^\infty(0,T; L^2)}$$\end{document}, L∞(0,T;H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^\infty(0,T; H^{1})}$$\end{document} and L∞([0,T]×Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^\infty([0,T]\times\Omega)}$$\end{document} with a rate of convergence.
引用
收藏
页码:1345 / 1415
页数:70
相关论文
共 37 条
  • [1] Agmon S.(1964)Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II Commun. Pure Appl. Math. 17 35-92
  • [2] Douglis A.(2010)Sharp inviscid limit results under Navier type boundary conditions, an J. Math. Fluid Mech. 12 397-411
  • [3] Nirenberg L.(2011) theory J. Math. Fluid Mech. 13 117-135
  • [4] Beiraoda Veiga H.(2006)Concerning the J. Differ. Equ. 228 377-411
  • [5] Crispo F.(1986) -inviscid limit for 3D flows under a slip boundary condition Commun. Math. Phys. 104 311-326
  • [6] Beiraoda Veiga H.(2012)Existence results for viscous polytropic fluids with vacuum J. Differ. Equ. 253 1862-1892
  • [7] Crispo F.(1990)Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations Commun. Partial Differ. Equ. 15 595-645
  • [8] Cho Y.G.(2011)Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions Arch. Ration. Mech. Anal. 199 145-175
  • [9] Kim H.(1972)Probleme mixte hyperbolique quasi-lineaire caracteristique J. Funct. Anal. 9 296-305
  • [10] Constantin P.(2014)Viscous boundary layers for the Navier–Stokes equations with the navier slip conditions Commun. Pure Appl. Math. 67 1045-1128