PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas

被引:42
|
作者
Yoon, Changhwan [1 ]
Lu, Jun [1 ,2 ]
Yi, Brendan C. [1 ]
Chang, Kevin K. [1 ]
Simon, M. Celeste [3 ]
Ryeom, Sandra [4 ]
Yoon, Sam S. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Surg, 1275 York Ave, New York, NY 10021 USA
[2] Fujian Med Univ Union Hosp, Dept Gastr Surg, Fuzhou, Fujian, Peoples R China
[3] Univ Penn, Perelman Sch Med, Abramson Family Canc Res Inst, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Canc Biol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
SOFT-TISSUE SARCOMA; TO-MESENCHYMAL TRANSITION; SELF-RENEWAL; THERAPEUTIC TARGETS; EXPRESSION; CHEMOTHERAPY; RESISTANCE; SUBPOPULATION; ACTIVATION; HYPOTHESIS;
D O I
10.1038/s41389-020-00300-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The self-renewal transcription factor Nanog and the phosphoinositide 3-kinase (PI3K)-Akt pathway are known to be essential for maintenance of mesenchymal stem cells. We evaluated their contribution to the maintenance of CD133(+) cancer stem-like cells (CSCs) and spheroid-forming cells in patient-derived cell lines from three human sarcoma subtypes: HT1080 fibrosarcoma, SK-LMS-1 leiomyosarcoma, and DDLS8817 dedifferentiated liposarcoma. Levels of Nanog and activated Akt were significantly higher in sarcoma cells grown as spheroids or sorted for CD133 expression to enrich for CSCs. shRNA knockdown of Nanog decreased spheroid formation 10- to 14-fold, and reversed resistance to both doxorubicin and radiation in vitro and in H1080 flank xenografts. In the HT1080 xenograft model, doxorubicin and Nanog knockdown reduced tumor growth by 34% and 45%, respectively, and the combination reduced tumor growth by 74%. Using a human phospho-kinase antibody array, Akt1/2 signaling, known to regulate Nanog, was found to be highly activated in sarcoma spheroid cells compared with monolayer cells. Pharmacologic inhibition of Akt using LY294002 and Akt1/2 knockdown using shRNA in sarcoma CSCs decreased Nanog expression and spheroid formation and reversed chemotherapy resistance. Akt1/2 inhibition combined with doxorubicin treatment of HT1080 flank xenografts reduced tumor growth by 73%. Finally, in a human sarcoma tumor microarray, expression of CD133, Nanog, and phospho-Akt were 1.8- to 6.8-fold higher in tumor tissue compared with normal tissue. Together, these results indicate that the Akt1/2-Nanog pathway is critical for maintenance of sarcoma CSCs and spheroid-forming cells, supporting further exploration of this pathway as a therapeutic target in sarcoma.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Adipose-derived mesenchymal stem cells promotes invasion of kidney cancer via PI3K/AKT pathway
    Muto, Yumina
    Numakura, Kazuyuki
    Narita, Shintaro
    Habuchi, Tomonori
    CANCER SCIENCE, 2022, 113 : 1721 - 1721
  • [42] Connexin32 regulates expansion of liver cancer stem cells via the PI3K/Akt signaling pathway
    Li, Hongyu
    Wang, Boying
    Qi, Benquan
    Jiang, Guojun
    Qin, Min
    Yu, Meiling
    ONCOLOGY REPORTS, 2022, 48 (03)
  • [43] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [44] Activation of the PI3K/Akt pathway in neuroblastoma
    Sartelet, H.
    Castain, M.
    Fabre, M.
    Bosq, J.
    Rougemont, A.
    Michiels, S.
    Vassal, G.
    JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (18)
  • [45] Overview of the PI3K/Akt/mTOR pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2008, 19 : 21 - 21
  • [46] The PI3K/AKT/mTOR interactive pathway
    Ersahin, Tulin
    Tuncbag, Nurcan
    Cetin-Atalay, Rengul
    MOLECULAR BIOSYSTEMS, 2015, 11 (07) : 1946 - 1954
  • [47] The effect of the PI3K/AKT pathway inhibition on leiamyosarcoma cells.
    D'Amato, GZ
    Mohapatra, S
    Jove, R
    Windham, TC
    Burns, AC
    Sullivan, D
    Muro-Cacho, C
    Letson, GD
    Pledger, WJ
    JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (14) : 818S - 818S
  • [48] Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway
    Tao Xiang
    Yong Fang
    Shi-xuan Wang
    Journal of Huazhong University of Science and Technology [Medical Sciences], 2014, 34 : 740 - 744
  • [49] Quercetin Suppresses HeLa Cells by Blocking PI3K/Akt Pathway
    Xiang, Tao
    Fang, Yong
    Wang, Shi-xuan
    JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY-MEDICAL SCIENCES, 2014, 34 (05) : 740 - 744
  • [50] Quercetin Suppresses HeLa Cells by Blocking PI3K/Akt Pathway
    项涛
    方勇
    王世宣
    Current Medical Science, 2014, (05) : 740 - 744