Variations on the Baer–Suzuki theorem

被引:0
|
作者
Robert Guralnick
Gunter Malle
机构
[1] University of Southern California,Department of Mathematics
[2] TU Kaiserslautern,FB Mathematik
来源
Mathematische Zeitschrift | 2015年 / 279卷
关键词
Baer–Suzuki theorem; Conjugacy classes; Commutators; Primary 20D20; Secondary 20G07; 20F12;
D O I
暂无
中图分类号
学科分类号
摘要
The Baer–Suzuki theorem says that if p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is a prime, x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} is a p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-element in a finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and ⟨x,xg⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle x, x^g \rangle $$\end{document} is a p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-group for all g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in G$$\end{document}, then the normal closure of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-group. We consider the case where xg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^g$$\end{document} is replaced by yg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^g$$\end{document} for some other p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-element y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document}. While the analog of Baer–Suzuki is not true, we show that some variation is. We also answer a closely related question of Pavel Shumyatsky on commutators of conjugacy classes of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elements.
引用
收藏
页码:981 / 1006
页数:25
相关论文
共 27 条
  • [21] Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type VI. Suzuki and Ree groups
    Carnovale, Giovanna
    Costantini, Mauro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (04)
  • [22] TWISTED BURNSIDE-FROBENIUS THEOREM AND R∞-PROPERTY FOR LAMPLIGHTER-TYPE GROUPS
    Fraiman, M., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 890 - 898
  • [23] Weighted Frechet-Kolmogorov Theorem and Compactness of Vector-Valued Multilinear Operators
    Xue, Qingying
    Yabuta, Kozo
    Yan, Jingquan
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 9891 - 9914
  • [24] Weighted Fréchet–Kolmogorov Theorem and Compactness of Vector-Valued Multilinear Operators
    Qingying Xue
    Kôzô Yabuta
    Jingquan Yan
    The Journal of Geometric Analysis, 2021, 31 : 9891 - 9914
  • [25] AN UPPER TRIANGULAR DECOMPOSITION THEOREM FOR SOME UNBOUNDED OPERATORS AFFILIATED TO II1-FACTORS
    Dykema, Ken
    Sukochev, Fedor
    Zanin, Dmitriy
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 222 (02) : 645 - 709
  • [26] Born-Jordan pseudodifferential operators and the Dirac correspondence: Beyond the Groenewold-van Hove theorem
    de Gosson, Maurice A.
    Nicola, Fabio
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 144 : 64 - 81
  • [27] Vust's Theorem and higher level Schur-Weyl duality for types B, C and D
    Luo, Li
    Xiao, Husileng
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (02) : 340 - 358