Variations on the Baer–Suzuki theorem

被引:0
|
作者
Robert Guralnick
Gunter Malle
机构
[1] University of Southern California,Department of Mathematics
[2] TU Kaiserslautern,FB Mathematik
来源
Mathematische Zeitschrift | 2015年 / 279卷
关键词
Baer–Suzuki theorem; Conjugacy classes; Commutators; Primary 20D20; Secondary 20G07; 20F12;
D O I
暂无
中图分类号
学科分类号
摘要
The Baer–Suzuki theorem says that if p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is a prime, x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} is a p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-element in a finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and ⟨x,xg⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle x, x^g \rangle $$\end{document} is a p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-group for all g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in G$$\end{document}, then the normal closure of x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-group. We consider the case where xg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^g$$\end{document} is replaced by yg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^g$$\end{document} for some other p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-element y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document}. While the analog of Baer–Suzuki is not true, we show that some variation is. We also answer a closely related question of Pavel Shumyatsky on commutators of conjugacy classes of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elements.
引用
收藏
页码:981 / 1006
页数:25
相关论文
共 27 条
  • [1] Variations on the Baer-Suzuki theorem
    Guralnick, Robert
    Malle, Gunter
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) : 981 - 1006
  • [2] Weakly subnormal subgroups and variations of the Baer-Suzuki theorem
    Guralnick, Robert M.
    Tong-Viet, Hung P.
    Tracey, Gareth
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (01):
  • [3] Baer-Suzuki theorem for the solvable radical of a finite group
    Gordeev, Nikolai
    Grunewald, Fritz
    Kunyavskii, Boris
    Plotkin, Eugene
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) : 217 - 222
  • [4] From Thompson to Baer-Suzuki: A sharp characterization of the solvable radical
    Gordeev, Nikolai
    Grunewald, Fritz
    Kunyavskii, Boris
    Plotkin, Eugene
    JOURNAL OF ALGEBRA, 2010, 323 (10) : 2888 - 2904
  • [5] Variations on the Thompson theorem
    Tong-Viet, Hung P.
    JOURNAL OF ALGEBRA, 2025, 668 : 46 - 74
  • [6] Improving Thompson's Conjecture for Suzuki Groups
    Akhlaghi, Zeinab
    Khatami, Maryam
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (09) : 3927 - 3932
  • [7] A GENERALIZATION OF THE BROWN-PEARCY THEOREM
    Ng, P. W.
    OPERATORS AND MATRICES, 2015, 9 (01): : 57 - 82
  • [8] On the prime geodesic theorem for SL4
    Gušić D.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 42 - 48
  • [9] A VANISHING THEOREM FOR DIFFERENTIAL OPERATORS IN POSITIVE CHARACTERISTIC
    Samokhin, A.
    TRANSFORMATION GROUPS, 2010, 15 (01) : 227 - 242
  • [10] Surjective word maps and Burnside's theorem
    Guralnick, Robert M.
    Liebeck, Martin W.
    O'Brien, E. A.
    Shalev, Aner
    Tiep, Pham Huu
    INVENTIONES MATHEMATICAE, 2018, 213 (02) : 589 - 695