Ensemble learning for predicting ex vivo human placental barrier permeability

被引:0
作者
Che-Yu Chou
Pinpin Lin
Jongwoon Kim
Shan-Shan Wang
Chia-Chi Wang
Chun-Wei Tung
机构
[1] Taipei Medical University,Graduate Institute of Data Science
[2] National Health Research Institutes,National Institute of Environmental Health Sciences
[3] Korea Research Institute of Chemical Technology (KRICT),Chemical Safety Research Center
[4] National Taiwan University,Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine
[5] National Health Research Institutes,Institute of Biotechnology and Pharmaceutical Research
来源
BMC Bioinformatics | / 22卷
关键词
Machine learning; Ensemble learning; Alternative method; Placental barrier permeability;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 114 条
[1]  
Wang C-C(2020)Prediction of human fetal–maternal blood concentration ratio of chemicals PeerJ 8 e9562-934
[2]  
Lin P(2015)Quantitative structure-activity relationship model for the fetal-maternal blood concentration ratio of chemicals in humans Biol Pharm Bull 38 930-940
[3]  
Chou C-Y(2013)Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model J Vis Exp JoVE 76 50401-282
[4]  
Wang S-S(2019)Transfer learning for predicting human skin sensitizers Arch Toxicol 93 931-267
[5]  
Tung C-W(2018)Mechanism-informed read-across assessment of skin sensitizers based on SkinSensDB Regul Toxicol Pharmacol 94 276-494
[6]  
Takaku T(2020)Pred-Skin: a web portal for accurate prediction of human skin sensitizers Chem Res Toxicol 34 258-24
[7]  
Nagahori H(2020)Leveraging complementary computational models for prioritizing chemicals of developmental and reproductive toxicity concern: an example of food contact materials Arch Toxicol 94 485-733
[8]  
Sogame Y(2016)Principles and procedures for implementation of ICH M7 recommended (Q)SAR analyses Regul Toxicol Pharmacol 77 13-8286
[9]  
Takagi T(2009)Application of quantitative structure–activity relationships for modeling drug and chemical transport across the human placenta barrier: a multivariate data analysis approach J Appl Toxicol 29 724-29
[10]  
Grafmüller S(2015)Prediction of placental barrier permeability: a model based on partial least squares variable selection procedure Molecules 20 8270-701