Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients

被引:0
|
作者
Jarne Verhaeghe
Sofie A. M. Dhaese
Thomas De Corte
David Vander Mijnsbrugge
Heleen Aardema
Jan G. Zijlstra
Alain G. Verstraete
Veronique Stove
Pieter Colin
Femke Ongenae
Jan J. De Waele
Sofie Van Hoecke
机构
[1] Ghent University - imec,IDLab, Department of Information Technology
[2] Ghent University,Department of Internal Medicine and Pediatrics
[3] University Medical Center Groningen,Department of Critical Care
[4] Ghent University,Department of Diagnostic Sciences
[5] University Medical Center Groningen,Department of Anesthesiology
[6] Ghent University Hospital,Department of Critical Care Medicine
来源
BMC Medical Informatics and Decision Making | / 22卷
关键词
Critically ill; Intensive care; Machine learning; Piperacillin/tazobactam; Population pharmacokinetics; Therapeutic drug monitoring; Uncertainty quantification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan
    Ming-Cheng Chan
    Kai-Chih Pai
    Shao-An Su
    Min-Shian Wang
    Chieh-Liang Wu
    Wen-Cheng Chao
    BMC Medical Informatics and Decision Making, 22
  • [42] Performance Evaluation of Machine Learning Models to Predict Heart Attack
    Khan M.
    Husnain G.
    Ahmad W.
    Shaukat Z.
    Jan L.
    Ul Haq I.
    Ul Islam S.
    Ishtiaq A.
    Machine Graphics and Vision, 2023, 32 (01): : 99 - 114
  • [43] Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning
    Shawwa, Khaled
    Ghosh, Erina
    Lanius, Stephanie
    Schwager, Emma
    Eshelman, Larry
    Kashani, Kianoush B.
    CLINICAL KIDNEY JOURNAL, 2021, 14 (05) : 1428 - 1435
  • [44] Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning
    Cheng, Yi-Wei
    Kuo, Po-Chih
    Chen, Shih-Hong
    Kuo, Yu-Ting
    Liu, Tyng-Luh
    Chan, Wing-Sum
    Chan, Kuang-Cheng
    Yeh, Yu-Chang
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2024, 38 (02) : 271 - 279
  • [45] Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning
    Yi-Wei Cheng
    Po-Chih Kuo
    Shih-Hong Chen
    Yu-Ting Kuo
    Tyng-Luh Liu
    Wing-Sum Chan
    Kuang-Cheng Chan
    Yu-Chang Yeh
    Journal of Clinical Monitoring and Computing, 2024, 38 : 271 - 279
  • [46] Identifying Predictors of ICU Mortality Outcomes Among Critically Ill Patients With Atrial Fibrillation Using Machine Learning Models
    Rajan, Vijval
    Zhang, Yanjia
    Zhang, Zhenwei
    Ahmed, Md Ashfaq
    Roy, Mukesh
    Ramamoorthy, Venkataraghavan
    Rubens, Muni
    Saxena, Anshul
    CIRCULATION, 2023, 148
  • [47] Machine learning models for mortality prediction in critically ill patients with acute pancreatitis-associated acute kidney injury
    Liu, Yamin
    Zhu, Xu
    Xue, Jing
    Maimaitituerxun, Rehanguli
    Chen, Wenhang
    Dai, Wenjie
    CLINICAL KIDNEY JOURNAL, 2024, 17 (10)
  • [48] Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury
    Luo, Xiao-Qin
    Yan, Ping
    Duan, Shao-Bin
    Kang, Yi-Xin
    Deng, Ying-Hao
    Liu, Qian
    Wu, Ting
    Wu, Xi
    FRONTIERS IN MEDICINE, 2022, 9
  • [49] Evaluation of population pharmacokinetic models for amikacin dosage individualization in critically ill patients
    del Mar Fernandez de Gatta, Maria
    Romano Moreno, Silvia
    Victoria Calvo, Maria
    Ardanuy, Ramon
    Dominguez-Gil, Alfonso
    Lanao, Jose M.
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2009, 61 (06) : 759 - 766
  • [50] Machine learning for predicting mortality in adult critically ill patients with Sepsis: A systematic review
    Nikravangolsefid, Nasrin
    Reddy, Swetha
    Truong, Hong Hieu
    Charkviani, Mariam
    Ninan, Jacob
    Prokop, Larry J.
    Suppadungsuk, Supawadee
    Singh, Waryaam
    Kashani, Kianoush B.
    Garces, Juan Pablo Domecq
    JOURNAL OF CRITICAL CARE, 2024, 84