Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients

被引:0
|
作者
Jarne Verhaeghe
Sofie A. M. Dhaese
Thomas De Corte
David Vander Mijnsbrugge
Heleen Aardema
Jan G. Zijlstra
Alain G. Verstraete
Veronique Stove
Pieter Colin
Femke Ongenae
Jan J. De Waele
Sofie Van Hoecke
机构
[1] Ghent University - imec,IDLab, Department of Information Technology
[2] Ghent University,Department of Internal Medicine and Pediatrics
[3] University Medical Center Groningen,Department of Critical Care
[4] Ghent University,Department of Diagnostic Sciences
[5] University Medical Center Groningen,Department of Anesthesiology
[6] Ghent University Hospital,Department of Critical Care Medicine
来源
BMC Medical Informatics and Decision Making | / 22卷
关键词
Critically ill; Intensive care; Machine learning; Piperacillin/tazobactam; Population pharmacokinetics; Therapeutic drug monitoring; Uncertainty quantification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Predicting Discharge Destination of Critically Ill Patients Using Machine Learning
    Abad, Zahra Shakeri Hossein
    Maslove, David M.
    Lee, Joon
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) : 827 - 837
  • [32] Mortality prediction in critically ill patients using machine learning score
    Dzaharudin, F.
    Ralib, A. M.
    Jamaludin, U. K.
    Nor, M. B. M.
    Tumian, A.
    Har, L. C.
    Ceng, T. C.
    5TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING RESEARCH 2019 (ICMER 2019), 2020, 788
  • [33] Predicting Atrial Fibrillation in Critically Ill Patients: A Machine Learning Approach
    Alomari, Laith
    Al-Fakhouri, Zaid
    Jarrar, Yaman
    CIRCULATION, 2023, 148
  • [34] Evaluation of the Accuracy of a Pharmacokinetic Dosing Program in Predicting Serum Vancomycin Concentrations in Critically Ill Patients
    Aubron, Cecile
    Corallo, Carmela E.
    Nunn, Maya O.
    Dooley, Michael J.
    Cheng, Allen C.
    ANNALS OF PHARMACOTHERAPY, 2011, 45 (10) : 1193 - 1198
  • [35] Steady-state plasma and intrapulmonary concentrations of piperacillin/tazobactam 4 g/0.5 g administered to critically ill patients with severe nosocomial pneumonia
    Emmanuel Boselli
    Dominique Breilh
    Maxime Cannesson
    Fabien Xuereb
    Thomas Rimmelé
    Dominique Chassard
    Marie-Claude Saux
    Bernard Allaouchiche
    Intensive Care Medicine, 2004, 30 : 976 - 979
  • [36] Steady-state plasma and intrapulmonary concentrations of piperacillin/tazobactam 4 g/0.5 g administered to critically ill patients with severe nosocomial pneumonia
    Boselli, E
    Breilh, D
    Cannesson, M
    Xuereb, F
    Rimmelé, T
    Chassard, D
    Saux, MC
    Allaouchiche, B
    INTENSIVE CARE MEDICINE, 2004, 30 (05) : 976 - 979
  • [37] Evaluation of the risk of acute kidney injury with the use of piperacillin/tazobactam among adult critically ill patients
    Saad, Mohamed O.
    Mohamed, Adham M.
    Mitwally, Hassan A.
    Shible, Ahmed A.
    Hssain, Ali Ait
    Abdelaty, Mohamed A.
    INFECTION, 2020, 48 (05) : 741 - 747
  • [38] Machine learning to predict venous thrombosis in acutely ill medical patients
    Nafee, Tarek
    Gibson, C. Michael
    Travis, Ryan
    Yee, Megan K.
    Kerneis, Mathieu
    Chi, Gerald
    AlKhalfan, Fahad
    Hernandez, Adrian F.
    Hull, Russell D.
    Cohen, Ander T.
    Harrington, Robert A.
    Goldhaber, Samuel Z.
    RESEARCH AND PRACTICE IN THROMBOSIS AND HAEMOSTASIS, 2020, 4 (02) : 230 - 237
  • [39] Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients
    Vitt, Jeffrey R.
    Mainali, Shraddha
    SEMINARS IN NEUROLOGY, 2024, 44 (03) : 342 - 356
  • [40] Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan
    Chan, Ming-Cheng
    Pai, Kai-Chih
    Su, Shao-An
    Wang, Min-Shian
    Wu, Chieh-Liang
    Chao, Wen-Cheng
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)