Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients

被引:0
|
作者
Jarne Verhaeghe
Sofie A. M. Dhaese
Thomas De Corte
David Vander Mijnsbrugge
Heleen Aardema
Jan G. Zijlstra
Alain G. Verstraete
Veronique Stove
Pieter Colin
Femke Ongenae
Jan J. De Waele
Sofie Van Hoecke
机构
[1] Ghent University - imec,IDLab, Department of Information Technology
[2] Ghent University,Department of Internal Medicine and Pediatrics
[3] University Medical Center Groningen,Department of Critical Care
[4] Ghent University,Department of Diagnostic Sciences
[5] University Medical Center Groningen,Department of Anesthesiology
[6] Ghent University Hospital,Department of Critical Care Medicine
来源
BMC Medical Informatics and Decision Making | / 22卷
关键词
Critically ill; Intensive care; Machine learning; Piperacillin/tazobactam; Population pharmacokinetics; Therapeutic drug monitoring; Uncertainty quantification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Towards precision dosing of vancomycin in critically ill patients: an evaluation of the predictive performance of pharmacometric models in ICU patients
    Cunio, C. B.
    Uster, D. W.
    Carland, J. E.
    Buscher, H.
    Liu, Z.
    Brett, J.
    Stefani, M.
    Jones, G. R. D.
    Day, R. O.
    Wicha, S. G.
    Stocker, S. L.
    CLINICAL MICROBIOLOGY AND INFECTION, 2021, 27 (05) : 783.e7 - 783.e14
  • [22] Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan
    Chan, Ming-Cheng
    Pai, Kai-Chih
    Su, Shao-An
    Wu, Chieh-Liang
    Chao, Wen-Cheng
    BMC ANESTHESIOLOGY, 2022, 22 (01)
  • [23] Machine learning to predict 30-day quality-adjusted survival in critically ill patients with cancer
    dos Santos, Hellen Geremias
    Zampieri, Fernando Godinho
    Normilio-Silva, Karina
    da Silva, Gisela Tunes
    Pedroso de Lima, Antonio Carlos
    Cavalcanti, Alexandre Biasi
    Porto Chiavegatto Filho, Alexandre Dias
    JOURNAL OF CRITICAL CARE, 2020, 55 : 73 - 78
  • [24] Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury
    Li, Xunliang
    Wu, Ruijuan
    Zhao, Wenman
    Shi, Rui
    Zhu, Yuyu
    Wang, Zhijuan
    Pan, Haifeng
    Wang, Deguang
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [25] Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan
    Kai-Chih Pai
    Shao-An Su
    Ming-Cheng Chan
    Chieh-Liang Wu
    Wen-Cheng Chao
    BMC Anesthesiology, 22
  • [26] Association Between Urine Output and Mortality in Critically Ill Patients: A Machine Learning Approach
    Heffernan, Aaron J.
    Judge, Stephanie
    Petrie, Stephen M.
    Godahewa, Rakshitha
    Bergmeir, Christoph
    Pilcher, David
    Nanayakkara, Shane
    CRITICAL CARE MEDICINE, 2022, 50 (03) : E263 - E271
  • [27] Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models
    Park, Ji Hyun
    Cho, Yongwon
    Shin, Donghyeok
    Choi, Seong-Soo
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08):
  • [28] Systematic Evaluation of Voriconazole Pharmacokinetic Models without Pharmacogenetic Information for Bayesian Forecasting in Critically Ill Patients
    Kallee, Simon
    Scharf, Christina
    Schatz, Lea Marie
    Paal, Michael
    Vogeser, Michael
    Irlbeck, Michael
    Zander, Johannes
    Zoller, Michael
    Liebchen, Uwe
    PHARMACEUTICS, 2022, 14 (09)
  • [29] Machine-learning models are superior to severity scoring systems for the prediction of the mortality of critically ill patients in a tertiary medical center
    Chou, Ruey-Hsing
    Hsu, Benny Wei-Yun
    Yu, Chun-Lin
    Chen, Tai-Yuan
    Ou, Shuo-Ming
    Lee, Kuo-Hua
    Tseng, Vincent S.
    Huang, Po-Hsun
    Tarng, Der-Cherng
    JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2024, 87 (04) : 369 - 376
  • [30] Anti-factor Xa during unfractionated heparin therapy in critically ill patients: Development of prediction models using machine learning
    Delange, Boris
    Bouzille, Guillaume
    Guillot, Pauline
    Bichon, Anaelle
    de Lajartre, Oceane Bernard
    Gouin, Isabelle
    Launey, Yoann
    Mansour, Alexandre
    Lesouhaitier, Mathieu
    Tadie, Jean-Marc
    Gacouin, Arnaud
    Cuggia, Marc
    Maamar, Adel
    DIGITAL HEALTH, 2025, 11